Смекни!
smekni.com

Разработка методов биотехнологического получения белков, аминокислот и нуклеозидов, меченных дейтерием и изотопом углерода 13С с высокими степенями изотопного обогащения (стр. 3 из 7)

Таблица 1. Влияние изотопного состава среды на рост штамма M.flagelaum.

Номер Компоненты среды, об% Величина Выход Время опыта лаг-фазы биомассы генерации Н2О D2O СНзОН СDзОD часы % ч
1 99,0 0 1,0 0 0 100 1,1
2 99,0 0 0,5 0,5 0,2 91,0 0,8
3 99,0 0 0 1,0 0,8 81,0 1,0
4 49,5 49,5 1,0 0 2,4 76,0 1,4
5 49,5 49,5 0,5 0,5 5,7 75,0 1,2
6 49,5 49,5 0 1,0 6,7 70,0 1,3
7 24,5 74,5 1,0 0 5,6 29,0 1,4
8 99,0 0 1,0 'ЗСНзОН 0 0,1 72,0 1,0

Как и следует из литературных данных (Складнее Д. А, 1990), введение стабильного изотопа углерода |3С не приводит к летальным последствиям для клетки, что мы и наблюдали в случае с М. flage/talum. В целом, полученные для М. flagellatum данные могут свидетельствовать о том, что адаптация к тяжёлой воде определяется как видовой специфичностью метилотрофных бактерий, так и особенностями их метаболизма. Кроме этого, из таблицы 1 следует, что данный подход можно эффективно использовать для введения в синтезируемые БАС двойной изотопной метки (дейтерий- и изотоп углерода 15C).

Изучение ростовых и биосинтетических характеристик Б. methylicum на средах, содержащих CH3OH/CD3OD и D2O. Данные по росту исходного и адаптированного к тяжёлой воде штамма В. methylicum и максимальному уровню накопления L-фенилаланина в культуральной жидкости на минимальных средах с добавкой 2 об.% метанола и его дейтерированного аналога СН3OН/CD3OD, содержащих ступенчато увеличивающиеся концентрации тяжёлой воды, представлены в таблице 2. Как видно из табл. 2, в отсутствии дейтерий-меченных субстратов продолжительность лаг-фазы не превышала 24 ч (см. табл. 2, опыт 1). С увеличением концентрации тяжёлой воды в среде продолжительность лаг-фазы увеличивалась до 64,4 ч на средах с 98 об.% тяжелой водой и 2 об.% CD3OD (табл. 2, опыт 10). Отмечено, что длительность времени клеточной генерации с увеличением степени изотопного насыщения среды дейтерием постепенно увеличивается, достигая 4,9 часов на максимально дейтерированной среде (табл. 2, опыт 10).

Таблица 2.

Влияние изотопного состава среды на рост штамма В. mehylicum и уровень накопления L-фенилаланина в культуральной жидкости*.

Номер Компоненты среды, об% лаг-фаза Выход Время Выход опыта биомассы генер. L-Phe, Н2 О D2O СH3ОН CD3OD ч % ч %
1 98 0 2 0 24,0 100 2,2 100
2 98 0 0 2 30,3 92,3 2,4 99,1
3 73,5 24,5 2 0 32,1 90,6 2,4 96,3
4 73,5 24,5 0 2 34,7 85,9 2,6 97,1
5 49,0 49,0 2 0 40,5 70,1 3,0 98,0
6 49,0 49,0 0 2 44,2 60,5 3,2 98,8
7 24,5 73,5 2 0 45,8 56,4 3,5 90,4
8 24,5 73,5 0 2 49,0 47,2 3,8 87,6
9 0 98,0 2 0 60,5 32,9 4,4 79,5
10 0 98,0 0 2 64,4 30,1 4,9 71,5
10' 0 98,0 0 2 39,9 87,2 2,9 95,0

'Данные (1-10) приведены для В. methylicum, не адаптированного к средам с высоким содержанием дейтерия.

Данные 10' приведены для адаптированного В. methylicum.

Как видно из табл. 2, опыт 2, дейтерометанол CD3OD не вызывал существенного ингибирования роста и не оказывал влияния на выход микробной биомассы, в то время как на средах с 98 об.% тяжёлой водой микробный рост подавлялся. Так, на среде, содержащей 98 об.% тяжёлой воды и 2 об.% дейтерометанола СDзОD, выход микробной биомассы был снижен в 3,3 раза no-сравнению с контролем. Важно то, что выход микробной биомассы и уровень накопления L-фенилаланина в культуральной жидкости при росте адаптированного к тяжёлой воде штамма В. inethylicum в полностью дейтерированной среде изменяются по сравнению с контрольными условиями на 12,8% и 5% соответственно (табл. 2, опыт 10').

За счёт использования данного штамма В. methylicum удалось выделить порядка 1 г L-Phe из 1 л среды.

Исследование биосинтеза L-фенилаланина штаммом В. methylicum. Общей особенностью биосинтеза L-Phe в протонированных средах было значительное увеличение его продукции на ранней фазе экспоненциального роста В. inethylicum, когда выход микробной биомассы был незначителен (рис. I).

Рис. I. Динамики роста В. methylicum (la, 10'а, 10а) и накопления L-Phe в культуральной жидкости (16, 10'б, 106) на средах с различным изотопным составом: 1 а,б - исходный микроорганизм на протоннрованной среде М9; 10' а,б -адаптированный В. methylicum на полностью дейтерированной среде; 10 а,б - еадаптированный микроорганизм на полностью дейтерированной среде.

Во всех изотопных экспериментах наблюдалось ингибирование биосинтеза L-фенилаланина на поздней фазе экспоненциального роста и снижение его концентрации в ростовых средах. Согласно данным по микроскопическому исследованию растущей популяции микроорганизмов, наблюдаемый характер динамики секреции L-Phe не коррелировал с качественными изменениями ростовых характеристик культуры на различных стадиях роста, что служило подтверждением морфологической однородности микробной популяции. Скорее всего, накопленный в процессе роста фенилаланин ингибировал ферменты собственного пути биосинтеза. Кроме того, мы не исключаем возможность, что при ферментации без рН-статирования может происходить обратное превращение экзогенного фенилаланина в интермедиаторные соединения его биосинтеза, что отмечено в работах других авторов (Ворошилова Э. Б., Гусятипер М. М., 1989). Данные по исследованию культуральной жидкости методом тонкослойной хроматографии (ТСХ) показали, что кроме L-фенилаланина данный штамм В. methylicum синтезирует и накапливает в культуральной жидкости другие аминокислоты (аланин, валин, лейцин, изолейцин), четко детектируемые масс-спектрометрическим анализом (см. след, главу).

Изучение качественного и количественного состава внутриклеточных сахаров В. subtilis. В ходе выполнения работы был изучен качественный и количественный состав внутриклеточных Сахаров при росте В. subtilis на среде с 99,9 ат.% тяжёлой воды (см. табл. 3). Как видно из таблицы 3, в гидролизатах биомассы данного штамма фиксируются глюкоза, фруктоза, рамноза, арабиноза, сахароза и мальтоза.

Таблица 3.

Качественный и количественный состав внутриклеточных Сахаров В. subtilis при росте на 99,9 %тяжёлой воде.

Компонент Содержание в биомассе, % Рост на Н2О Рост на 99,9% D2O
Глюкоза 20,01 21,40
Фруктоза 6,12 6,82
Рамноза 2,91 3,47
арабиноза 3,26 3,69
мальтоза 15,30 11,62
сахароза 8,62 -

Изучение аминокислотного состава биомассы метилотрофных бактерий В. tnethylicum. Аминокислотный состав суммарных белков биомассы В. methylicum, полученного в ходе многоступенчатой адаптации к тяжёлой воде показан в таблице 4. Результаты исследования показали небольшое снижение содержания в дейтерированном белке Ala, Leu и Нis по сравнению с белком, полученным на обычной воде (табл. 4).

Таблица 4.

Качественный и количественный состав аминокислот общих белков биомассы В. methylicum.

Аминокислота Содержание в белке, % Рост на Н2О Рост на 98% D2O
Gly 8,03 9,69
Ala 12,95 13,98
Val 3,54 3,74
Leu 8,62 7,33
His 4,14 3,64
Phe 3,88 3,94
Tyr 1,56 1,82
Asp 7,88 9,59
Glu 11,68 10,38
Lys 4,37 3,98
His 3,43 3,72
Thr 4,81 5,51
Met 4,94 2,25
Arg 4,67 5,27

Изучение ростовых и биосинтетических характеристик В. subtilis на средах, содержащих тяжёлую воду и гидролизаты метилотрофных бактерий. Кривые, отражающие динамику роста, ассимиляции глюкозы и накопление инозина в культуральной жидкости штаммом В. subtilis в условиях протонированной среды и среды, с 99,9 ат.% тяжёлой воды представлены на рис. 2.