В связи с тем, что штамм - продуцент фенилалапина В. methylicum был ауксотрофом по лейцину, эту аминокислоту в немеченном виде добавляли в ростовую среду, содержащую 98 об.% тяжёлой воды. Как показали наши исследования по включению дейтерия к молекулы экзогенных аминокислот, в условиях ауксотрофности по лейцину степень изотопного обогащения лейцина, а также метаболически связанных с ним аминокислот немного ниже, чем для других аминокислот. Так, при росте В. methylicum на среде, содержащей 98 об.% тяжёлой воды и немеченный L-Leu, степени включения дейтерия в Leu составили 51,0%, Ala -77,5%, Val - 58,8% (табл. 5). Суммируя полученные данные, можно сделать вывод о сохранении минорных путей метаболизма, связанных с биосинтезом лейцина de novo. Другим логическим объяснением наблюдаемого эффекта может быть ассимиляция клеткой немеченного лейцина из среды на фоне биосинтеза меченного изолейцина de novo.
Исследование степеней включения дейтерия в L-Phe В. methylicum в максимально дейтерированной среде. Мы предположили, что за счёт ауксотрофности штамма В. methylicum по лейцину, уровни включения дейтерия в секретируемыи фенилаланин на фоне максимальных концентраций тяжёлой воды могут быть ниже теоретически допустимых вследствие функционирования в клетке ряда биохимических реакций, связанных с ассимиляцией протонированного лейцина извне. Как мы и ожидали, отмеченная особенность лучше всего проявлялась при биосинтезе фенилаланина на дейтерированной среде, в которой единственным протонированным соединением, кроме метанола, являлся лейцин (см. табл. 5, опыт 9). В этом опыте степень дейтерированности L-фенилаланина составила 75%, т.е. только шесть атомов (из восьми в углеродном скелете) в молекуле" фенилаланина биосинтетически замещены на дейтерий. Согласно данным масс-спектрометрического анализа, атомы дейтерия распределены по положениям С1-С6 ароматической части фенилаланина и сопредельному положению b, причем, как миниум четыре из них могут быть локализованы в самом бензольном кольце молекулы фенилаланина. Результат по получению L-Phe с данным характером включения метки очень важен для биотехнологического использования и имеет существенные преимущества по-сравнению с химическим (Н-D)-обменом (Griffiths D. V., 1986).
Исследование степени включения дейтерия в молекулу фенилаланина за счёт конверсии дейтерометанола CD3OD в В. methylicum.
Контроль за включением дейтерия в молекулу L-Phe за счет конверсии дейтерометанола CD3OD при росте бактерий на среде, содержащей обычную воду и 2 об.% дейтерометанол CD3OD (соответствуют опыту 2, табл. 1) показал незначительное количество дейтерия, которое поступает в молекулу L-фенилаланина вместе с углеродом CD3OD, Процент дейтерирования фенилаланина был вычислен по величине пика с m/z 413 за вычетом вклада пика примеси природного изотопа (не более 4%). Полученный результат может быть объяснён разбавлением дейтериевой метки за счёт протекания как биохимических процессов, связанных с распадом дейтерометанола CD3OD при его ассимиляции клеткой, так и реакциями изотопного обмена и диссоциации в тяжёлой воде. Так, из четырёх атомов дейтерия, имеющихся в молекуле СDзOD, лишь один атом дейтерия при гидроксильной группе -OD самый подвижный и поэтому легко диссоциирует в водной среде с образованием СDзОН. Три оставшихся атома дейтерия в составе СDзОН входят в цикл ферментативного окисления метанола, который, в свою очередь, мог привести к потере дейтериевой метки за счёт образования соединений более окисленных, чем метанол. В частности, такое включение дейтерия в молекулу L-фенилаланина подтверждает классическую схему ферментативного окисления метанола до формальдегида в клетках метилотрофов, который лишь после этого ассимилируется у данного штамма метилотрофных бактерий РМФ-путем фиксации углерода (Nesvera J., 1991).
Исследование степеней включения изотопа углерода 13С в молекулы экзогенных аминокислот М. flagellatum за счёт биоконверсии 13СНзОН.
Наши исследования подтвердили, что для получения |3С-аминокислот за счет микробной конверсии 13СНзОН предварительная адаптация не является лимитирующим этапом, поскольку этот., субстрат не оказывает негативного биостатического эффекта на ростовые и биосинтетические характеристики метилотрофов. При росте М. flagellatum на среде, содержащей 99 об.% воду и 1 об.% |3СНзОН клетка продуцирует лейцин, a также глицин, фланин, валин и фенилаланин. Как видно из таблицы 5, уровни изотопного включения |3С в Gly, Ala, Val и Phe составляют 60, 35, 50 и 95% соответственно. При этом низкая степень включения изотопа углерода |3С в метаболически связанные с изолейцином аминокислоты обусловлена эффектом ауксотрофиости бактерий в изолейцине, который добавляли в ростовую среду в немеченном виде.
4. ИЗУЧЕНИЕ СТЕПЕНЕЙ ВКЛЮЧЕНИЯ ИЗОТОПОВ ДЕЙТЕРИЯ и УГЛЕРОДА 13С в АМИНОКИСЛОТНЫЕ ОСТАТКИ СУММАРНЫХ БЕЛКОВ M. methylkiim и М.flagellatum.
Выделение дейтерий- и 1}С-алшнокислот из белковых гидролизатов. Поскольку при работе с микробной биомассой возникают проблемы, связанные с очисткой от сопутствующих компонентов, было необходимо применять специальные подходы при выделении фракции суммарных белков из бактериальных источников.
При выделении фракции суммарных белков биомассы метилотрофных бактерий (В. methylicum, M. flagellatum) учитывалось наличие в них углеводов. Мы использовали богатые по белку штаммы бактерий со сравнительно небольшим содержанием углеводов в них, гидролизу в качестве фракции суммарных белков подвергали остаток после исчерпывающего отделения пигментов и липидов экстракцией органическими растворителями (метанол-хлороформ-ацетон}.
Во всех случаях гидролиз белков проводили в 6 н. растворе DC1 (3 масс.% фенола в D2O) или в 4 н. растворе Ва(ОН):для предотвращения реакций обратного изотопного обмена (H-D) в ароматических аминокислотах и их разрушения.
Дейтерий- и 13С-меченные аминокислоты в составе гидролизатов суммарного белка биомассы были разделены методом ОФ ВЭЖХ со степенью хроматографической чистоты 93-96% и выходами 75-89% в условиях, аналогичных таковым для разделения секретируемых аминокислот (табл. 6). Хотя в таблице 6 приведены данные только для 10 аминокислот, очевидно, что в остальных аминокислотах уровни изотопного включения сопоставимы, хотя они не детектируются данным методом. Это предположение подтверждается данными по разделению белковых гидролизатов метилотрофных бактерий методом ионнообменной хроматографии на колонке "Biotronic LC 5001", где детектируется уже 15 аминокислот (см. рис. 4).
Исследование степеней включения дейтерия в аминокислотные остатки белка В. methylicum па средах с тяжёлой водой.
Общие принципы изучения степени изотопного обогащения молекул аминокислот при данном способе введения метки продемонстрированы на примере анализа включения дейтерия в мультикомпонентные смеси аминокислот, полученные после гидролиза суммарных белков биомассы в 6 н. DCl и 4 н. Ва(ОН).
Во всех -экспериментах по научению содержания дейтерия в аминокислотных остатках белка наблюдалась корреляция между степенью изотопного насыщения среды и уровнями включения дейтерия в аминокислоты (табл. 6), Например, для индивидуальных аминокислот белковых гидролизатов количество включенных атомов дейтерия по скелету молекулы варьирует незначительно в пределах 49%-ной концентрации тяжёлой воды и составляет для Ala 45%, Val - 36,3%, Leu/Ile - 42%, Phe -37,5%.
Таблица 6.
Степени включения D и 13С в аминокислотные остатки общих белков биомассы В. melhyiicum* и М. flagellatum**.
Аминокислоты | Содержание D2O в среде, об% 24,5 49,5 73,5 98,0 | 13СНзОН 1 об% | |||
Gly | 15,0 | 35,0 | 50,0 | 90,0 | 90,0 |
Ala | 20,0 | 45,0 | 62,5 | 97,5 | 95,0 |
Val | 15,0 | 36,3 | 50,0 | 50,0 | 50,0 |
Leu/lie | 10,0 | 42,0 | 45,0 | 49,0 | 49,0 |
Phe | 24,5 | 37,5 | 50,0 | 95,0 | 80,5 |
Туr | 20,0 | 48,8 | 68,8 | 92,8 | 53,5 |
Ser | 15,0 | 36,7 | 47,6 | 86,6 | 73,3 |
Asp | 20,0 | 36,7 | 60,0 | 66,6 | 33,3 |
Glu | 20,0 | 40,0 | 53,4 | 70,0 | 40,0 |
Lys | 10,0 | 21,1 | 40,0 | 58,9 | 54,4 |
'Данные по включению дейтерия в аминокислоты приведены для В. melhyiicum при росте на средах, содержащих 2 об.% СН3ОН и 24,5; 49,5; 73,5; 98,0 об.% D2O. **Данные по включению 13С приведены для М. flagellatum при росте на среде, содержащей 1 об.% 13СН3ОН и 99 об.% Н2О.
Исследование степеней включения дейтерия в аминокислотные остатки белка В. melhyiicum на максимально дейтерированной среде. Полученные данные свидетельствуют о возможности достижения максимальных уровней включения дейтерия в аминокислотные остатки белков за счет адаптации культуры В. melhyiicum к росту и биосинтезу на среде с максимальной концентрацией тяжёлой воды. Как видно из таблицы 6, при росте В. methylicum на среде, содержащей 98 об.% тяжёлой воды, степени включения дейтерия в остатки Gly, Ala и Phe составляют 90, 97,5 и 95%, т.е. уровень мечения можно считать униформным. Низкие степени включения дейтерия в молекулы лейцина (49%), а также в метаболически связанных аминокислотах в этих условиях могут быть объяснены за счет ауксотрофности штамма в лейцине, который добавляли в среду культивирования в протонированной форме. Полученный результат по разбавлению дейтериевой метки в лейцине может быть объяснён сохранением доли минорных реакций в биосинтезе лейцина de novo.