Смекни!
smekni.com

Разработка энергосберегающей технологии ректификации циклических углеводородов (стр. 11 из 13)

Из рисунка 29 видно, что большую часть концентрационного симплекса занимает область оптимальности схемы с предварительным фракционированием; эта область прилегает к вершине тяжелокипящего компонента. Большой диапазон применимости и расположение области оптимальности этой структуры коррелирует с рядом известных эвристик. Например, с такими:

· компонент, содержание которого существенно превышает содержание всех остальных компонентов исходной смеси, должен отбираться первым в общей последовательности выделения компонентов;

· процесс разделения наиболее трудноразделимой пары компонентов должен проводится последним в общей последовательности разделения.

Сравнение результатов оптимизации схем.

В ходе работы была проведена параметрическая оптимизация технологических схем экстрактивной ректификации смеси циклогексан – бензол – этилбензол, принадлежащих различным классам структур: класс П – схемы, состоящие из двухотборных колонн (схемы–прообразы), класс Ф – схемы, содержащие сложные колонны с боковыми секциями (схемы–образы). В результате были найдены параметры (температура, расход, уровень ввода экстрактивного агента, положение тарелок питания всех колонн схемы, уровень и количество бокового отбора), обеспечивающие минимальные энергозатраты на разделение. Выше подробно были описаны все необходимые этапы оптимизационной процедуры для одной их схем каждого класса. Для остальных схем разделения мы провели подобную оптимизацию, включающую те же этапы.

Для смеси циклогексан – бензол – этилбензол нами был рассмотрен состав питания,%мол.: 10-80-10.

Обратимся к результатам оптимизации технологических схем. В табл.20 представлена совокупность параметров схем класса П (рис.31), обеспечивающих минимальные энергозатраты.

Рис.31. Технологические схемы класса П для разделения смеси циклогексан – бензол – этилбензол экстрактивной ректификацией, разделяющий агент – анилин

Для всех исследуемых структур температура подачи разделяющего агента достаточно высока, она превышает температуру кипения верхнего продукта, однако при этом анилин остается в жидкой фазе для обеспечения нисходящего потока экстрагента. Расход анилина варьируется от 0,6 до 0,7 на единицу потока исходного питания, это достаточно невысокие значения. Оптимизация этого параметра с учетом энергопотребления колонны регенерации позволяет существенно снизить энергозатраты.

Более подробные результаты, включающие энергопотребление каждой колонны технологических схем класса П представлены в табл.21.

Таблица 20. Оптимальные параметры схем разделения смеси циклогексан – бензол – этилбензол, состоящих из двухотборных колонн. ЭА – анилин

Параметр Схема ТЭА, °С F: ЭА NF1 NF 2 NF3 QΣ, ГДж/ч
Состав ЦГ–Б–ЭБ,% мол. = 10-80-10
Схема 1 100 1: 0,6 3/9 8 9 6,53
Схема 2 100 1: 0,6 3/9 11 18 9,52
Схема 3 90 1: 0,7 15 3/9 10 8,78

Таблица 21. Энергопотребление (ГДж/ч) и флегмовые числа колонн в схемах класса П

R Qконд Qкип
К1 К2 К3 К1 К2 К3 К1 К2 К3
Состав ЦГ–Б–ЭБ,% мол. = 10-80-10
Схема 1 5,79 0,63 1,98 2,23 2,99 0,75 5,97 2,06 3,60 0,87 6,53
Схема 2 5,79 0,10 0, 19 2,23 3,39 3,33 8,95 2,06 4,09 3,37 9,52
Схема 3 0,22 2,35 0,04 3,58 1,74 2,80 8,12 3,64 1,51 3,63 8,78

Сравнение энергопотребления схем для исследуемого состава питания показывает, что максимальная разница между структурами достигает 46%. Это говорит о значительной экономии при выборе оптимального технологического решения.

Профили температур, а также расходов жидкости и пара экстрактивной колонны для оптимальных технологических схем разделения смеси циклогексан – бензол – этилбензол состава питания 10-80-10%мол. представлены на рис.32.

Далее проанализируем данные, полученные в результате параметрической оптимизации схем класса Ф, содержащие сложные колонны с боковыми секциями Структуры исследуемых технологических схем были представлены на рис.21, а результаты параметрической оптимизации в табл22.

Видно, что для класса схем Ф значение оптимальных параметров (температура экстрактивного агента, расход ЭА, уровни ввода ЭА и питания в экстрактивную колонну) близки к соответствующим значениям, полученным для схем класса П. Это говорит о возможности использования совокупности оптимальных данных для одного класса техно-логических схем в качестве начальных приближений при проектировании и оптимизации схем другого класса. Это в свою очередь приводит к сокращению затрат времени на пред-проектную проработку и ускоренному созданию энергосберегающих структур. Схема 2

Схема 1

Схема 2

Схема 3

Рис.32 Профили температуры и потоков жидкости и пара экстрактивной колонны для состава исходного питания ЦГ – Б – ЭБ = 10 – 80 – 10% мол.

Таблица 22. Оптимальные параметры схем разделения смеси циклогексан – бензол – этилбензол, содержащих колонны с боковыми секциями. ЭА – анилин

Параметр Схема ТЭА, °С F: ЭА NF1 NF 2 NF3 БО кмоль/ч QΣ, ГДж/ч
Состав ЦГ–Б–ЭБ,% мол. = 80-10-10
Схема 1-1 100 1: 0,6 3/9/22 7 99 6,10
Схема 1-2 100 1: 0,6 3/9 8/17 9 6,14
Схема 1-3 100 1: 0,6 3/11/26/34 90/15 5,75
Схема 2-1 100 1: 0,5 3/12 3/9 15 6,47
Схема 3-1 100 1: 0,6 15 5/12/23 85 8,02

Видно, что для класса схем Ф значение оптимальных параметров (температура экстрактивного агента, расход ЭА, уровни ввода ЭА и питания в экстрактивную колонну) близки к соответствующим значениям, полученным для схем класса П. Это говорит о возможности использования совокупности оптимальных данных для одного класса технологических схем в качестве начальных приближений при проектировании и оптимизации схем другого класса. Это в свою очередь приводит к сокращению затрат времени на предпроектную проработку и ускоренному созданию энергосберегающих структур.

Оценка энергопотребления технологических схем, содержащих сложные колонны с боковыми секциями, показывает снижение тепловых нагрузок на кипятильники колонн по сравнению с традиционными структурами из простых двухотборных колонн. Результаты расчета по каждой колонне для схем класса Ф представлены в табл.23.

Таблица 23. Энергопотребление (ГДж/ч) и флегмовые числа колонн в схемах класса Ф

Схема R Qконд Qкип
К1 К2 К3 К1 К2 К3 К1 К2 К3
Состав ЦГ–Б–ЭБ,% мол. = 10-80-10
1-1 4,60 0,24 1,37 1,18 3,41 0,93 5,52 5,01 1,09 6,10
1-2 5,78 0,06 0,47 2,23 2,98 0,37 5,58 2,06 4,08 6,14
1-3 4,74 0,11 0,85 1,49 3,07 0,61 5,17 5,75 5,75
2-1 5,46 0,49 2,03 1,86 4,14 6,00 1,68 4,50 0,29 6,47
3-1 0,22 3, 19 0,04 3,58 0,94 2,96 7,48 3,64 4,38 8,02

Видно, что структурой, обладающей минимальным энергопотреблением оказывается для состава питания ЦГ – Б – ЭБ = 10-80-10% мол. – схема 1-3, состоящая из одной сложной колонны с двумя укрепляющими секциями, представленная на рис.33.

Рис.33. Оптимальные технологические схемы разделения класса Ф.

На рис.34 представлены профили температур и расходов жидкости и пара по высоте ректификационной колонны, содержащей две боковые секции (схема 1-3) Ф для состава ЦГ – Б – ЭБ = 10 – 80 – 10% мол.

Рис.34. Профили температуры и потоков жидкости и пара сложной колонны, содержащей два боковых отбора. Состав исходного питания ЦГ – Б – ЭБ = 10 – 80 – 10% мол.

Проведем количественное сравнение энергопотребления схем различных классов структур, для этого обратимся к табл.24. Здесь проведено сопоставление суммарных энергозатрат схем-прообразов и соответствующих им схем-образов, а также энергопотребление колонн технологических схем, которые подвергались непосредственно трансформации при синтезе структур. Так, например, для схемы 1 сравнивались нагрузки на кипятильники двухотборных колонн 1 и 2 для прообраза и соответствующей им сложной колонны 1 с боковой укрепляющей секцией для схемы-образа.