Смекни!
smekni.com

Расчет тарельчатой ректификационной колонны для разделения бинарной углеводородной смеси бензол-толуол (стр. 5 из 12)

Рис. 1.13. Схема устройства ситчатой колонны: 1 – корпус; 2 – ситчатая тарелка; 3 – переливная трубка; 4 – стакан.

Пар проходит через отверстия тарелки (см. рис. 1.14) и распределяется в жидкости в виде мелких струек; лишь на некотором расстоянии от дна тарелки образуется слой пены и брызг – основная область массообмена и теплообмена на тарелке.

Рис. 1.14. Схема работы ситчатой тарелки.

В определенном диапазоне нагрузок ситчатые тарелки обладают большим к.п.д., чем колпачковые. Однако допустимые нагрузки по жидкости и пару для ситчатых колонн относительно невелики. При слишком малой скорости пара (около 0,1 м/сек) происходит просачивание жидкости через отверстия тарелки и в связи с этим резкое падение к.п.д. тарелки.

Давление и скорость пара, проходящего через отверстия сетки, должны быть достаточными для преодоления давления слоя жидкости на тарелке и должны препятствовать ее стекания через отверстия.

Проскок жидкости у ситчатых тарелок возрастает с увеличением диаметра тарелки и отклонением ее от строго горизонтального положения. Поэтому диаметр и число отверстий следует подбирать так, чтобы жидкость удерживалась на тарелках и не увлекалась механически паром. Обычно диаметр отверстий ситчатых тарелок принимают равным 0,8 – 3 мм.

Ситчатые колонны эффективно работают только при определенных скоростях ректификации, и регулирование режима их работы затруднительно. Кроме того, ситчатые тарелки требуют весьма тщательной горизонтальной установки, так как иначе пары будут проходить через часть поверхности сетки, не соприкасаясь с жидкостью.

Ситчатые тарелки уступают колпачковым по допустимому верхнему пределу нагрузки; при значительных нагрузках потеря напора в них больше, чем у колпачковых.

При внезапном прекращении подвода пара или значительном снижении его давления тарелки ситчатой колонны полностью опоражниваются от жидкости, и требуется заново запускать колонну для достижения заданного режима ректификации.

Очистка, промывка и ремонт ситчатых тарелок производятся относительно удобно и легко.

Чувствительность к колебаниям нагрузки, а также загрязнениям и осадкам, которые образуются при перегонке кристаллизующихся веществ и быстро забивают отверстия тарелки, ограничивают область использования ситчатых колонн; их применяют, главным образом, при ректификации спирта и жидкого воздуха (кислородные установки).

Для повышения к.п.д. в ситчатых тарелках (как и в колпачковых) создают более длительный контакт между жидкостью и паром.

2. Теоретические основы расчета тарельчатых ректификационных колонн

Известно два основных метода анализа работы и расчета ректификационных колонн: графоаналитический (графический) и аналитический. Существуют некоторые допущения, мало искажающие действительный процесс, но существенно упрощающие его анализ и расчет:

1.молярные теплоты испарения компонентов при одной и той же температуре приблизительно одинаковы, поэтому каждый кмоль пара при конденсации испаряет 1 кмоль жидкости. Следовательно, количество поднимающихся паров в любом сечении колонны одинаково;

2.в дефлегматоре не происходит изменения состава пара. Состав пара, уходящего из ректификационной колонны, равен составу дистиллята;

3.при испарении жидкости в кипятильнике не происходит изменения ее состава;

4.теплоты смешения компонентов разделяемой смеси равны 0.

2.1 Материальный баланс ректификационной колонны

Согласно схеме на рис. 2.15 в колонну поступает F кмоль исходной смеси, состав которой хF в мольных долях низкокипящего компонента. Сверху из колонны удаляется G кмоль паров, образующих после конденсации флегму и дистиллят. Количество получаемого дистиллята D кмоль, его состав хD в мольных долях низкокипящего компонента. На орошение колонны возвращается флегма в количестве Ф кмоль, причем ее состав равен составу дистиллята (хф=xD в мольных долях). Снизу из колонны удаляется W кмоль остатка состава xwв мольных долях низкокипящего компонента. Тогда уравнение материального баланса колонны имеет вид:

Ф+F=G+W (2.14)

Поскольку G=D+Ф, то

F=D+W (2.15)

Соответственно по низкокипящему компоненту материальный баланс имеет вид:

FxF=DxD+WxW (2.16)

Концентрации питания, дистиллята и кубового остатка в мольных долях рассчитываются по формулам:

Питание:

, где (2.17)

– мольные массы бензола и толуола.

Дистиллят:

(2.18)

Кубовый остаток:

(2.19)

Рис. 2.15. К составлению материального баланса ректификационной колонны: 1 – куб–испаритель; 2 – колонна; 3 – дефлегматор.

2.2. Расчет флегмового числа

Нагрузки ректификационной колонны по пару и жидкости определяются рабочим флегмовым числом R (R=Ф/D).

Используют приближенные вычисления, основанные на определении коэффициента избытка флегмы (орошения) Z=R/Rmin. Здесь Rmin – минимальное флегмовое число:

, где (2.20)

хF и хD – мольные доли легколетучего компонента соответственно в исходной смеси и дистилляте, кмоль/кмоль смеси; y*F – концентрация легколетучего компонента в паре, находящемся в равновесии с исходной смесью, кмоль/кмоль смеси.

Один из возможных приближенных методов расчета R заключается в нахождении такого флегмового числа, которому соответствует минимальное произведение N´(R+1), пропорциональное объему ректификационной колонны (N – число ступеней изменения концентраций или теоретических тарелок, определяющее высоту колонны, а (R+1) – расход паров и, следовательно, сечение колонны).

При отсутствии данных о коэффициенте избытка флегмы для разделяемых смесей можно применять эмпирическую зависимость:

R=1,3·Rмин+0,3 (2.21)

Более точный метод расчета Rопт предполагает знание приведенных затрат и учет расходов, связанных с подачей сырья и подводом теплоты в колонну и организацией ее орошения, а также стоимость колонны и вспомогательного оборудования.

Рис. 2.16. К определению оптимального флегмового числа: 1 – эксплуатац. расходы; 2 – капитальные затраты; 3 – общие затраты на ректификацию.

2.3. Уравнения рабочих линий

y=

(2.22)

Зависимость (2.22) является уравнением рабочей линии укрепляющей части колонны. В этом уравнении

– тангенс угла наклона рабочей линии к оси абсцисс, а
– отрезок, отсекаемый верхней рабочей линией на оси ординат.

, где f=F/D (2.23)

Зависимость (2.22) представляет собой уравнение рабочей линии исчерпывающей части колонны. В этом уравнении

– тангенс угла наклона рабочей линии к оси ординат, а
– отрезок, отсекаемый нижней рабочей линией на оси абсцисс. Умножив числитель и знаменатель выражений для А' и А на количество дистиллята D, можно заметить, что они представляют собой отношения количеств жидкой и паровой фаз, или удельный расход жидкости, орошающей данную часть колонны.

2.4. Определение числа тарелок и высоты колонны

Наносим на диаграмму y–x рабочие линии верхней и нижней части колонны рис. 2.17 и находим число ступеней изменения концентрации nТ.

Рис. 2.17. Графическое определение числа теоретических тарелок:

ОE – равновесная кривая, АВ и ВС – рабочие линии для укрепляющей в исчерпывающей частей колонны, 1–6 – тарелки.

Число тарелок рассчитывается по уравнению:

(2.24)

Для определения среднего к.п.д. тарелок

находим коэффициент относительной летучести разделяемых компонентов при средних температурах для верхней и нижней частей колонны:

Для верхней части:

(2.25)

Для нижней части:

(2.26)

Величина среднего к.п.д. тарелок

, который зависит от многих переменных величин (конструкция и размеры тарелки, гидродинамические факторы, физико-химические свойства пара и жидкости). На рис. 2.18 приведены значения среднего к.п.д. тарелок, полученные по опытным данным для промышленных ректификационных колонн сравнительно небольшого диаметра. По оси абсцисс на этом графике отложены произведения коэффициента относительной летучести разделяемых компонентов α на динамический коэффициент вязкости жидкости питания μ (в мПа·с) при средней температуре в колонне.