Типы сополимеров
Исходя из количества типов мономерных звеньев сополимеры разделяются на двойные и тройные или терполимеры. Около 90% общего производства сополимеров приходится на двойные сополимеры.
Многокомпонентные сополимеры практически не производятся. С точки зрения расположения звеньев сополимеры делят на четыре группы:
а - aaabbb - б - aaaaaa
b
в - abababab - b
b
г - abbabaabbba - b
В блок-сополимерах все звенья одного типа расположены в одной или нескольких частях цепи (а). В зависимости от числа частей цепи, состоящих из одинаковых звеньев, говорят о двух, трех и мультиблочных сополимерах. В привитых сополимерах (б) основная цепь содержит мономерные звенья одного типа, ветви основной цепи -звенья другого типа. В чередующихся сополимерах (в) звенья двух типов регулярно чередуются. В статистических сополимерах (г) звенья двух типов расположены в цепи хаотически, именно они составляют основу промышленного производства сополимеров. Механизм сополимеризации, за исключением одного случая, не отличается от механизма полимеризации. Статистические и привитые сополимеры наиболее просто можно получить методом радикальной полимеризации. Блок-сополимеры получают в промышленности методом анионной полимеризации, а чередующиеся сополимеры - лишь методами так называемой комплексно-радикальной сополимеризации [1]. Суть отвечающего ей механизма состоит в том, что разные мономеры по тем или иным причинам образуют комплекс, который и участвует в процессе полимеризации как единая кинетическая единица. В данном случае разные мономеры сначала выстраиваются попарно, а затем эти пары образуют цепь.
Блок-сополимеры
В настоящее время синтезированы блочные сополимеры с самой различной архитектурой. Мультиблочные макромолекулы могут иметь регулярное или случайное чередование блоков. Получены градиентные сополимеры, в которых распределение блоков плавно меняться от одного конца цепи до другого. Наряду с линейными известны также гребнеобразные сополимеры: к их основной цепи, построенной из однотипных звеньев, присоединены в виде зубцов гребенки блоки, состоящие из звеньев другого типа. Боковые блоки могут содержать различные функциональные группы, способные к ассоциации за счет диполь-дипольных взаимодействий, образования водородных связей и т.д. весьма интересные картины самоорганизации демонстрируют гребнеобразные комплексы, возникающие в результате нековалентного связывания молекул поверхностно-активных веществ с полимерными цепями. На рис. представлен один из примеров такого комплекса, в котором молекулы пентадецилфенола присоединены водородной связью к атому азота пиридиновых групп поли-4-винилперидина. С формальной точки зрения подобный комплекс является привитым сополимером, в состав которого входят группы с конкурентным взаимодействием. Воспрепятствовать тенденции к макроскопической сегрегации в системе двух несмешивающихся полимеров А и В можно также за счет создания поперечных ковалентных связей между однотипными цепями.
На практике образование такого материала - взаимопроникающей полимерной сетки (ВПС) - достигается в том случае, если оба полимера синтезируют при химическом сшивании в присутствии друг друга. В результате получаются два сеточных каркаса, между которыми нет химических связей, но которые соединены в единую конструкцию за счет топологической связи (подобно катенанам - кольцевым структурам, физически сцепленным друг с другом). Поскольку сетки неспособны разделиться, их конфликт интересов частично устраняется путем микрофазного расслоения.
Заметим, что взаимопроникающие сетки могут быть построены и на основе ионсодержащих полимеров.
Формы самоорганизации. Образование мицелл низкомолекулярных амфифилов
Чтобы лучше понять процессы самоорганизации полимеров, рассмотрим более подробно, как протекает агрегация обычных амфифилов в водных растворах.
Типичным представителем лиофильных дисперсных систем являются мицеллярные дисперсии ПАВ, в которых на ряду с отдельными молекулами присутствуют коллоидные частицы (мицеллы) - ассоциаты молекул ПАВ с достаточно большой степенью ассоциации (число молекул в мицелле) m = 20-100 и более. При образовании таких мицелл в полярном растворителе (воде) углеводородные цепи молекул ПАВ объединяются в компактные углеводородное ядро, а гидротированные полярные группы, обращенные в сторону водной фазы, образуют гидрофильную оболочку. Благодаря гидрофильности наружной оболочки, экранирующей углеводородное ядро от контакта с водой, поверхностное натяжение на границе мицеллы-среда оказывается сниженным, что обуславливает термодинамическую устойчивость мицеллярных систем относительно макрофазы ПАВ. При низкой концентрации раствора подавляющее число амфифильных молекул находится в неассоциированном состоянии (в виде мономеров). Если концентрация растворенного вещества увеличивается и достигает некоторого значения, называемого критической концентрацией мицеллообразования, в системе возникают мицеллярные агрегаты различного размера, форма которых близка к сферической. При постоянной температуре мицеллярная фаза находится в термодинамическом равновесии с раствором мономеров. Рост концентрации сдвигает равновесие в сторону образования более крупных мицелл. При этом сферические агрегаты с радиусом ~1 нм могут превращаться в эллипсоидальные, а затем и в цилиндрические агрегаты с радиусом ~10 нм. Последние напоминают слегка изогнутые трубки, в которых углеводородные цепи размещаются внутри цилиндрических оболочек, построенных из полярных частей молекул. Дальнейший рост концентрации приводит к формированию так называемой гексагональной фазы - частично упорядоченной структуры с приблизительно гексагональной упаковкой параллельно ориентированных цилиндров, пространство между которыми заполнено водой. При еще более высокой концентрации амфифилов эта структура трансформируется в ламеллярную фазу, напоминающую слоеный пирог, в котором слои воды перемежаются с двойными слоями амфифильных молекул. Поскольку по мере уменьшения содержания воды диэлектрическая проницаемость среды e уменьшается (для жидкой воды e » 81) и приближается к значению, характерному для жидкого амфифила, в системе начинают преобладать силы диполь-дипольного притяжения между недиссоциированными полярными группами амфифильных молекул. Поэтому дальнейшее уменьшение содержания воды ведет к перестройке структур в обратном направлении: ламеллярная фаза преобразуется в инвертированные цилиндры, а те в свою очередь – в инвертированные мицеллы.
Полиморфных переходы
О взаимных превращениях структур различного типа говорят как о полиморфных переходах. Такой термин, более привычный для кристаллохимиков, употребляется не случайно. Действительно, одной из замечательных особенностей рассмотренных систем является их жидкокристалличность. Как известно, жидкие кристаллы (или мезофазы) представляют собой вещества, которые имеют свойства и жидкостей и твердых тел. С одной стороны, они обладают текучестью, а с другой - молекулы такого вещества упорядочены наподобие кристаллической решетки. Для жидких кристаллов часто характерна анизотропия механических, электрических, магнитных и оптических свойств, в частности наличие двойного лучепреломления. Именно такой ярко выраженной анизотропией свойств обладают гексагональная и ламеллярная мезофазы. Заметим также, что способы описания и физические методы исследования мезофаз аналогичны тем, которые используются в кристаллографии. Так, о полиморфных переходах в амфифильных системах обычно судят используя рентгеноструктурный анализ или метод рассеяния нейтронов.
Структурное разнообразие самоорганизующихся полимеров
Все названные классические типы структур возможны и для самоорганизующихся полимеров. Для полимерных систем структурное разнообразие (полиморфизм) даже шире, чем в случае низкомолекулярных амфифилов. Это определяется как большим химическим разнообразием макромолекул, так и более высокой стабильностью формирующихся суперструктур, что обусловлено уже упоминавшимися энтропийными причинами. В частности, при микрофазном разделении блочных АВ-сополимеров гораздо легче, чем для низкомолекулярных соединений, удается наблюдать другие структурные мотивы - промежуточные между ламеллями и отдельными мицеллами.
Надмолекулярные структуры. Сплошными линиями обозначены стабильные состояния: L — ламеллярная фаза, G — гироидная, С — колончатая, S — кубическая мезофаза ; штриховыми — метастабильные: PL — перфорированная ламеллярная, D — двойная алмазная.
Объемоцентрированной кубической решетки (ОЦК)
Одна из таких периодически организованных трехмерных структур представляет собой кубическую мезофазу с элементами симметрии объемоцентрированной кубической (ОЦК) решетки. В этом случае блоки типа А образуют сферические мицеллоподобные домены с размером ~10 нм, которые составляют каркас структуры, а блоки типа, заполняют междоменное пространство. Изменение длины блоков позволяет регулировать размеры микродоменов и период ОЦК-структуры. Такая нанометровая морфология характерна не только для расплавов блочных сополимеров с нейтральными блоками, но и для слабо заряженных полиэлектролитов в водных растворах, когда имеется конкуренция между тенденцией к сегрегации незаряженных звеньев на малых масштабах и дальнодействующим кулоновским отталкиванием, которое стабилизирует регулярную микродоменную структуру. По ряду формальных признаков подобные системы эквивалентны обычным кристаллам (только их решетка не является жесткой и построена не из атомов, а из микродоменов, включающих в себя десятки или сотни мономерных звеньев). Поэтому, говоря об образовании таких систем, иногда используют термин «слабая суперкристаллизация».