Однією з найважливіших електрохімічних характеристик покриттів сплавами вважають їх каталітичну активність у реакції виділення водню, яка останнім часом набула надзвичайного значення, як і проблема водневої енергетики взагалі.
Сплав паладій - нікель є твердим розчином нескінченної розчинності, а його характеристики лінійно змінюються від більш каталітично активного компонента (Pd) до менш активного (Ni), тобто проявляється адитивність властивостей (табл.4). В інтервалі вмісту нікелю до 20% каталітична активність залишається досить високою та близька до каталітичної активності паладію.
Таблиця 4
Кінетичні характеристики реакції катодного виділення водню
на сплавах паладій – нікель
Вміст нікелю в сплаві, % | Тафелівські константи | Коефіцієнт переходу, б | Густина струму обміну, -lgjo, А/cм2 | |
b | -a | |||
0 | 0,16 | 0,35 | 0,37 | 3,30 |
4 | 0,16 | 0,35 | 0,35 | 3,60 |
18 | 0,19 | 0,38 | 0,35 | 3,80 |
39 | 0,24 | 0,27 | 0,26 | 4,10 |
43 | 0,23 | 0,30 | 0,26 | 4,31 |
Тестування каталітичних властивостей покриттів сплавами паладій - нікель проведено за знешкодженням газових викидів на стенді, що імітує роботу двигуна внутрішнього згоряння.
Рис. 4. Залежність об'ємної концентрації CO2 і CO від температури для сплаву Pd – Ni (щ(Ni)=20%) на 12Х18Н10Т
Температурні залежності концентрації ди- і монооксиду карбону у вихідних газах свідчать, що температура «запалювання», яка відповідає досягненню об'ємної частки оксиду карбону (IV) ц(CO2) = 1 %, знижується на електролітичних сплавах Pd – Ni на 130 єC (рис. 4) у порівнянні з паладійвмісним каталіза-тором на керамічному носії. Глибина окиснення бензолу на електролітичних сплавах, характеристикою якої служить ц(CO2), зростає практично вдвічі. При цьому у вихідних газах відсутні оксиди нітрогену. Подальші випробування каталітичних властивостей покриттів було проведено в процесі конверсії головних шкідливих компонентів вихідних газів двигунів внутрішнього згоряння в процесі неселективного очищення їх викидів від оксиду карбону(II) та оксидів нітрогену (табл. 5).
Таблиця 5
Випробування каталітичної активності паладійвмісного покриття
Склад покриття, (щ(Ni) в сплаві, %) | Товщина, мкм | Ступінь знешкодження, % | |
CO | NOx | ||
Pd | 1 | 95-97 | 52-57 |
Pd | 2 | 95-97 | 52-57 |
Pd - Ni, (10) | 1 | 95-96 | 51-55 |
Pd - Ni, (10) | 2 | 95-96 | 51-55 |
Pd - Ni, (20) | 1 | 95-96 | 50-54 |
Pd - Ni, (20) | 2 | 95-96 | 50-54 |
Pd - Ni, (30) | 1 | 92-93 | 45-50 |
Pd - Ni, (30) | 2 | 92-93 | 45-50 |
Як свідчать результати тестування, високу ефективність виявили покриття Pd - Ni з вмістом нікелю 20 %, каталітична активність яких близька до властивостей коштовного металу, при цьому з підвищенням товщини покриття термін працездатності зростає.
Результати досліджень дозволили запропонувати наступну технологічну схему комплексного нанесення каталітично активних покриттів (рис. 5).
Рис. 5. Принципова технологічна схема одержання каталітично-активних паладійвмісних систем.
У додатках наведено акти використання результатів дисертаційної роботи в ТОВ «Екотехніка», ТОВ ВО «Спецколор», технологічна інструкція на процес одержання гальванічного сплаву паладій – нікель.
ВИСНОВКИ
В дисертаційній роботі на підставі виконаних досліджень вирішено науково – практичну задачу удосконалення електрохімічної технології каталітичних покриттів паладієм та сплавом паладій – нікель.
1. На підставі вивчення закономірностей комплексоутворення в системі паладій(II) - пірофосфат-іон – аміак встановлено, що залежно від співвідношення основних компонентів утворюються моно– і білігандні комплекси. Визначено константи нестійкості PdР2O72-, Pd(P2O7)26- і
комплексів, встановлено області їх існування та доведено перспективи використання такої системи при створенні електролітів для нанесення покриттів паладієм і його сплавами на підкладку з некоштовних металів.2. Встановлено кінетичні закономірності та механізм відновлення паладію, а також сплаву паладій – нікель з комплексних електролітів, і показано, що швидкість процесу лімітується попередньою хімічною стадією дисоціації комплексів. Запропоновано та обґрунтовано склад пірофосфатно - амонійного електроліту та режими електролізу для осадження якісних паладійвмісних покриттів.
3. Запропоновано використання нестаціонарних імпульсних режимів електролізу для керування процесом підвищення питомої поверхні носія з жароміцної сталі, вмістом компонентів у сплаві паладій - нікель, що дозволило значно збільшити швидкість процесу та вихід за струмом сплаву.
4. Результати вивчення корозійної стійкості та каталітичної активності сплаву в реакції відновлення водню свідчать про адитивність властивостей у системі паладій - нікель. Встановлено, що близьку до властивостей паладію корозійну стійкість і каталітичну активність в електрохімічних та газофазних реакціях матеріалів проявляють сплави зі вмістом нікелю до 20%, які за рахунок істотно нижчої собівартості мають перед чистим паладієм значну перевагу.
5. Запропоновано принципову перспективну технологічну схему одержання каталітично-активних систем на основі паладію та опрацьовано режими електролізу, які дозволяють скоротити термін отримання каталізаторів.
6. Позитивний досвід випуску дослідних партій каталітичних матеріалів на ТОВ «Екотехніка» (м. Харків) і ТОВ ВО «Спецколор» (м. Харків) та їх дослідно-промислові випробування довели доцільність і ефективність технології, а передбачений економічний ефект становить 160 грн/м2 покриття.
СПИСОК ОПУБЛІКОВАНИХ ПРАЦЬ ЗА ТЕМОЮ ДИСЕРТАЦІЇ
1. Сахненко Н.Д. Электрохимический синтез полифункциональных модифици-рованных электродов / Сахненко Н.Д., Ведь М.В., Ладыгин О.С., Шепеленко А.С., Кравченко (Ненастина) Т.А. // Вісник НТУ «ХПІ».- Харків: НТУ «ХПІ».- 2005. -№15. -С. 139 - 142.
Здобувачем встановлено умови електрохімічного осадження паладію з пірофосфатних електролітів, склад та режими якого оптимізовано.
2. Ненастина Т.А. Электродные процессы с участием пирофосфатных комплексов / Ненастина Т.А., Ведь М.В., Сахненко Н.Д. // Вісник НТУ «ХПІ».-Харків: НТУ «ХПІ».- 2006. -№11. -С.137 - 144.
Здобувачем досліджено електрохімічну поведінку пірофосфатних комплексів паладію на платиновому електроді методом лінійної вольтамперометрії. Показано, що стадії розряду передує хімічна реакція дисоціації комплексів.
3. Ведь М.В. Електрохімічна формоутворююча обробка поверхні корозійностійких сплавів / Ведь М.В., Сахненко М.Д., Богоявленська О.В., Ненастіна Т.О. // Вопросы химии и химической технологии. - Днепропетровск: УДХТУ.- 2006.-№3. -С.123 – 127
Здобувачем досліджено процеси анодного розчинення легованих сталей і встановлено залежність питомої густини пітингів від кількості електрики та шпаруватості імпульсів.
4. Ведь М. Вплив поверхневої обробки на функціональні властивості покривів/ Ведь М., Сахненко М., Штефан В., Ненастіна Т., Желавський С. // Фізико-хімічна механіка матеріалів.-Львів.- 2006.- №5. - Т.2.- С.722-727.
Здобувачем досліджено процес поверхневої формоутворюючої обробки легованих сталей, запропоновано склади електролітів та режими поляризації для максимального розвитку поверхні.
5. Ненастина Т.А. Закономерности электроосаждения сплава палладий - никель из полилигандного электролита/ Ненастина Т.А., Ведь М.В., Сахненко Н.Д. // Вісник НТУ «ХПІ». -Харків: НТУ «ХПІ».- 2006.-№43-С.97 - 101.
Здобувачем визначено закономірності осадження паладію та нікелю у сплав з пірофосфатно – амонійного електроліту в гальваностатичному режимі.
6. Ненастина Т.А. Закономерности образования полилигандных комплексов палладия (II)/ Ненастина Т.А., Ведь М.В., Сахненко Н.Д. // Вестник науки и техники.-Харьков: ООО «ХДНТ».- 2006. - вып.№ 1-2. –С.59-66.
Здобувачем визначені константи нестійкості полілігандних комплексів паладію (II), показано перспективність їхнього використання при розробці електролітів для нанесення покриттів паладієм і його сплавами на підкладку з неблагородних металів.
7. Ненастина Т.А. Особенности осаждения сплава палладий-никель в импульсном режиме / Ненастина Т.А., Ведь М.В., Сахненко Н.Д. // Вісник НТУ «ХПІ». - Харків: НТУ «ХПІ».- 2007.-№9-С.95-99.
Здобувачем встановлено закономірності осадження паладію та нікелю у сплав з пірофосфатно–амонійного електроліту в імпульсному режимі.
8. Nenastina T. Electrochemical synthesis of catalytic active alloys/ T. Nenastina, T. Bairachnaya, M. Ved, N. Sakhnenko // Functional Materials. –Kharkiv.-14.-№3.- 2007.-C.395–400.
Здобувачем оптимізовані режими синтезу сплаву паладій-нікель, склад якого відпо-відає максимальній каталітичній активності при очищенні техногенних газових викидів.
9. Сахненко М.Д. Електрохімічний мікрогенератор амоніаку/ Сахненко М.Д., Ненас-тіна Т.О., Камарчук Г.В. // Вісник НТУ «ХПІ».-Харків: НТУ «ХПІ».- 2007.- №31- С.159 -165.