До сих пор не было попыток построить структурно-макрокинетическую теорию СВС-процесса, т.е. рассмотреть совместно процессы горения и структурообразования, что позволило бы глубже понять роль автоволнового процесса в формировании структуры продукта горения и роль структурных превращений в механизме твердопламенного горения.
По-прежнему, важными задачами являются экспериментальная диагностика и математическое моделирование (особенно, трехмерное) неустойчивых процессов горения, построение физико-химических моделей СВС в конкретных, наиболее важных в практическом отношении системах с предвычислением оптимальных условий синтеза, исследование кинетики тепловыделения в порошковых средах при высоких температурах.
Реагенты в СВС процессах используются в виде тонкодисперсных порошков, тонких пленок, жидкостей и газов. Наиболее распространены два типа систем: смеси порошков (спрессованные или насыпной плотности) и гибридные системы газ-порошок (или спрессованный агломерат). Известны СВС-процессы и в системах: порошок-жидкость, газ-взвесь, пленка-пленка, газ-газ. Главные требования к структуре исходной системы - обеспечение условий для эффективного взаимодействия реагентов. Шихта в СВС-процессах может находиться в вакууме, на открытом воздухе, в инертном или реагирующем газе под давлением.
В создании СВС системы могут участвовать все химически активные при высоких температурах вещества в качестве реагентов (химические элементы, индивидуальные соединения, многофазные структуры) и инертные вещества в качестве наполнителей или разбавителей.
Наиболее популярные реагенты:
H2, B, Al, C, N2, O2, Mg, Ti, Nb, Mo, Si, Ni, Fe, B2O3, TiO2, Cr2O3, MoO3, Fe2O3, NiO и др.
В качестве реагентов используется также минеральное сырье и промышленные отходы.
Условия подбора компонентов СВС-системы:
· экзотермичность взаимодействия реагентов
· образование полезных твердых продуктов
· техническая и экономическая целесообразность.
Горение в СВС-процессах оно получило название "твердое пламя".
Рассмотрим процессы при СВС более подробно и начнем с основного способа инициирования – это локальное инициирование реакции на поверхности системы путем подвода кратковременного теплового импульса (электрическая спираль, электроискровой разряд, лазерный луч и др.) с формированием волны горения и ее распространением по не нагретому исходному веществу. Длительность инициирования обычно намного меньше времени сгорания шихты.
· При этом режимы распространения фронта горения в простейшем и наиболее важном стационарном режиме все точки фронта движутся с постоянной во времени и одинаковой скоростью. Когда стационарный режим теряет устойчивость, могут возникнуть неустойчивые режимы распространения фронта: плоские автоколебания скорости фронта горения (пульсирующие горение)
· локализация реакции горения в очагах, движущихся по винтовой траектории (спинновые волны),
· беспорядочное движение множества очагов горения (хаотические твердые пламена).
Волна горения не распространяется по шихте в случае сильных теплопотерь в окружающую среду (малые диаметры шихтовых образцов, низкие адиабатические температуры взаимодействия реагентов).
В волне горения протекают различные химические, физические и физико-химические процессы, обеспечивающие в своей совокупности необходимое тепловыделение. Волна имеет определенную протяженность и состоит из ряда зон:
· зоны прогрева или предпламенной зоны (в ней реакции горения еще не протекают, а только осуществляется теплоперенос и нагрев шихты)
· зоны реакции (в ней протекают основные реакции горения, обеспечивающие необходимое тепловыделение)
· зоны догорания (в ней продолжаются химические реакции, но они уже не влияют на скорость распространения фронта)
· зоны (стадии) вторичных физико-химических превращений, определяющих состав и структуру конечных продуктов.
Распространение зоны химических реакций называют волной горения. Фронт - это условная поверхность, разделяющая зоны прогрева и реакции (передний край высокотемпературной зоны волны). Прохождение волны горения является основной стадией СВС. Популярная формула:
СВС = горение + структурообразование,
вторичные физико-химические превращения составляют вторую стадию СВС.
Процесс распространения волны характеризуют:
· пределом погасания (связь между параметрами системы, разделяющие две ситуации: распространение волны и отсутствия горения при любых условиях инициирования)
· пределом потери устойчивости (связь между параметрами системы, разделяющими режимы стационарного и неустойчивого горения)
· скоростью распространения фронта,
· максимальной температурой и
· темпом нагрева вещества в волне стационарного горения,
· в неустойчивых процессах - частотой пульсаций, скоростью движения очага по винтовой траектории, величиной сверхадиабатического эффекта и др.
· глубиной химического превращения исходных реагентов в конечные продукты (полнота горения)
- Зависимость недогорания от размеров частиц металла
- Зависимость недогорания от относительной плотности образца
· неравновесностью продукта горения, характеризующую незавершенность фазовых и структурных превращений в процессе; темпом остывания продуктов горения (редко).
Благодаря высоким значениям скорости и температуры горения и скорости нагрева вещества в волне СВС относят к категории экстремальных химических процессов.
Для процессов СВС химическая природа реагентов непосредственного значения не имеет - важны лишь величина теплового эффекта реакции и законы тепловыделения и теплопередачи, агрегатное состояние реагентов и продуктов, кинетика фазовых и структурных превращений и другие макроскопические характеристики процесса.
Поэтому химия СВС-процессов разнообразна. Наибольшее распространение получили
- реакции синтеза из элементов
Ti + C = TiC Ni + Al = NiAl 3Si + 2N2 = Si3N4 Zr + H2 = ZrH2
- окислительно-восстановительные реакции
B2O3 +3Mg + N2 = 2BN + 3MgO B2O3 + TiO2 +5Mg = TiB2 + 5MgO
MoO3 + B2O3 +4Al = MoB2 + 2Al2O3 3TiO2 + C + 4Al = TiC + 2Al2O3
2TiCl4 + 8Na + N2 = 2TiN + 8NaCl
- реакции окисления металлов в сложных оксидных средах
3Cu + 2BaO2 + 1/2Y2O3 + 0.5(1.5 - x)O2 = YBa2Cu3O7-x Nb + Li2O2 + 1/2Ni2O5 = 2LiNbO3
8Fe + SrO + 2Fe2O3 + 6O2 = SrFe12O19
Известны также СВС-реакции
- синтеза из соединений
PbO + WO3 = PbWO4
- взаимодействия разлагающихся соединений с элементами
2TiH2 + N2 = 2TiN + 2H2 4Al + NaN3 + NH4Cl = 4AlN + NaCl + 2H2
- термического разложения сложных соединений
2BH3N2H4 = 2BN + N2 + 7H2
Обобщая вышесказанное надо отметить, что весьма перспективным является проведение СВС-процессов в экзотермических системах органического синтеза (как порошковых, так и жидкофазных). В них СВС протекает при не очень высоких температурах (100-300С) и с более низкими скоростями, что позволяет более детально исследовать механизм СВС с применением таких типичных для органической химии методов как ЭПР, ЯМР и др. Для жидких систем появляется реальная возможность исследовать влияние возникающих свободно-конвективных течений на автоволновой процесс. Представляются перспективными (но пока совсем не проанализированными) и технологические приложения.
Незаслуженно не развиваются исследования СВС в криогенных системах (типа металлический порошок - жидкий азот), в смесях наноразмерных реагентов, в высокоплотных исходных составах.
В последние годы появилась возможность создания тонких многослойных пленок с наноразмерными слоями (например, путем магнетронного напыления). Исследование горения в таких пленках вызывает большой интерес, т.к. позволяют изучать гетерогенные особенности СВС-процессов в простейших (модельных) условиях, а также использовать этот процесс для нанесения тонких покрытий.
Требует большего внимания так называемый газофазный СВС - горение газовых смесей с конденсацией продукта как в виде мелких, наноразмерных частиц (гомогенная конденсация), так и в виде пленок (гетерогенная конденсация на введенных в смесь поверхностях). Несмотря на ограниченный круг объектов (газовых смесей, реагирующих с тепловыделением и образующих твердый продукт, не так уж много), такой процесс представляет теоретический интерес и может занять достойное место в технологической практике.
Большой интерес вызывает создание детонационных СВС-процессов, в которых передача энергии от продуктов реакции в исходную смесь происходит путем ударного сжатия вещества, а не благодаря теплопередаче, как в обычных СВС-процессах.
Технологические достоинства СВС заложены в самом принципе - использование быстровыделяющегося тепла химических реакций вместо нагрева вещества от внешнего источника, поэтому, многие СВС-процессы даже в простейшем варианте успешно конкурируют с традиционными энергоемкими технологиями. Однако по мере развития проблемы и технологии предъявляются все более сложные требования с целью получения максимального эффекта.
Выделим из всего многообразия две наиболее важные задачи.