Смекни!
smekni.com

Функціоналізовані енаміни в синтезі фосфоровмісних гетероциклів (стр. 2 из 3)

Взаємодію енамінів 1a-б та 2a-б з трихлоридом фосфору було детально досліджено за допомогою спектроскопії ЯМР 31Р. Встановлено, що оптимальними умовами для перебігу реакції є кімнатна температура, бензен або дихлорметан як розчинник та триетиламін як основа.

Показано, що піролідинові енаміни 1a і 2a реагують з PCl3 селективно з утворенням дихлорфосфінів 3a і 4a майже з кількісними виходами (схема 3).

Була вивчена взаємодія дихлорфосфінів 3a і 4a з рядом таких нуклеофілів як аміни та спирти. На основі нітрильної похідної 3a були отримані похідні тривалентного фосфору 5a,б та 6, утворення яких підтверджено спектроскопією ЯМР 31Р, хоча виділити в аналітично чистому вигляді вдається тільки аміди 5a,б. В подальшому сполуки 5, 6 були окиснені в розчині до похідних п’ятивалентного фосфору 7, 8, 9, 10.

Взаємодія дихлорфосфіну на основі естерного енаміну з діалкіламінами або спиртами при кімнатній температурі супроводжується розривом С-Р зв'язку і виділити продукт фосфорилювання не вдається. При проведенні реакції сполуки з морфоліном при ‑70°С в толуолі через 0.5 год утворюється виключно фосфамід 11, який фіксується за допомогою спектроскопії ЯМР 31P. Останній виявився стабільним при 0°С впродовж 30-40 хв., що дозволило перевести його в сполуки 12, 13, 14. Крім того, якщо реакцію з нуклеофілами проводити при кімнатній температурі в присутності окисника, наприклад сірки або фенілазиду, то також вдається виділити похідні п'ятивалентного фосфору 12, 13б, 15.

Реакції фосфорилювання енамінів 1, 2 метилдихлорфосфіном та фенілдихлорфосфіном перебігають так само як з трихлоридом фосфору.

Фосфорильований енамін 13б був використаний для синтезу С‑фосфорильованих гетероциклів. Наприклад, реакцією з гідразином та метилгідразином нами були отримані піразолони 16. Слід зазначити, що арилгідразини в цю не реакцію вступають.

РЕАКЦІЇ ПОХІДНИХ в‑АМІНОКРОТОНОВОЇ КИСЛОТИ З ДИФЕНІЛГАЛОГЕНФОСФІНАМИ

Регіоселективність фосфорилювання енамінів 1, 2 дифенілхлорфосфіном залежить від їхньої структури. Так, енаміни 1а,б, які містять в в-положенні нітрильну групу, фосфорилюються дифенілхлорфосфіном по класичному в-положенню з утворенням третинних фосфінів 17a,б, які були переведені у похідні фосфору (V) 18 і 19.

В той же час енаміни 2a,б, які містять в в-положенні карбетоксильну групу, фосфорилюються дифенілхлорфосфіном не в b-положення енаміну, а по метильній групі з утворенням фосфінів 20a,б. Слід зазначити, що реакція чутлива до умов її проведення. Так, у бензені в присутності триетиламіну фосфорилювання не відбувається взагалі, у піридині реакція проходить неселективно і дуже повільно. Успішним виявилося фосфорилювання в хлористому метилені в присутності триетиламіну, що перебігає за 24 год і приводить до третинних фосфінів 20a,б. Останні також можна одержати при взаємодії більш активного фосфорилюючого агента дифенілбромфосфіну в бензені в присутності триетиламіну як основи. Фосфіни 20a,б реагують з пероксидом водню або сіркою з утворенням відповідних похідних 21a,б і 22a,б. У м'яких умовах вдається провести гідроліз похідних п’ятивалентного фосфору до відповідних g‑фосфорильованих ацетооцтових естерів 23 і 24, що знаходять широке синтетичне застосування.

Реакції електрофільного заміщення по в’- положенню для пуш-пульних енамінів не є характерними. В літературі описано тільки декілька прикладів аналогічних реакцій з такими активними електрофільними агентами як хлораль, ангідрид трихлороцтової кислоти, естери трифлуоропіровиноградної кислоти.

Ми допускаємо, що реакція фосфорилювання по в’‑положенню починається з первинної атаки дифенілгалогенфосфіну на атом кисню з утворенням інтермедіата 26, який внутрішньо- або міжмолекулярно перетворюється в продукт 20.

СИНТЕТИЧНЕ ВИКОРИСТАННЯ в’-ФОСФОРИЛЬОВАНИХ ЕНАМІНІВ

Енаміни 21a,б і 22a,б виявилися перспективними об’єктами для синтезу поліфункціональних фосфорильованих бензенів та метиленфосфорильованих азотистих гетероциклів. Так, формілювання їх по Вільсмаєру-Хааку приводить до фосфорильованого діенаміну 30б, натомість вінілформілювання в аналогічних умовах, дає фосфорильовані аніліни 31, 32.

На основі енаміну 21 був запропонований зручний метод синтезу метиленфосфорильованого ізоксазолу 32, який використовується для синтезу аналогів таких природних сполук, як, наприклад, лейкотриен та гаруганін.

Продукт гідролізу енамінів 21a,б, г-фосфорильований ацетооцтовий естер 23, реагує з гідразинами з утворенням піразолонів 33, а також дає дигідропіридин 34а реакцією Ганча та конденсовані дигідропіримідини 34б,в в трикомпонентній взаємодії з амінотриазолом(тетразолом) і альдегідом. Сполука 23 була також успішно використана в реакціях Біджинелі та Фрідландера в присутності триметилхлорсілану як дегідратуючого реагенту, що дозволило синтезувати ряд метиленфосфорильованих дигідропіримідинів 35а-е, хінолін 36, тієнопіридин 37 та піразолопіридин 38.

СИНТЕЗ л5-ФОСФІНІНІВ ЗА СХЕМОЮ [5+1]-ЦИКЛОКОНДЕНСАЦІЇ

На сьогоднішній день 6-р-електроциклізація гексатриенових систем є невід’ємною частиною базових методів синтетичної органічної хімії, що широко застосовується у синтезі нових фармакологічних та агрохімічних препаратів, тотальному синтезі природних сполук та їх аналогів.

Виходячи з того факту, що в багатьох реакціях атом фосфору веде себе подібно атому вуглецю, можливо допустити, що заміна атома вуглецю на атом фосфору в гексатриеновій системі не порушить її здатність до циклізації.

Перевірити це припущення ми вирішили на прикладі 5‑фосфагексатриенових систем типу А. Вихідні сполуки 42а-в для побудови таких систем були синтезовані виходячи із фосфорильованих енамінів 18а, 19а, 39 за схемою 14. Останні реагують з диметилацеталем диметилформаміду з утворенням фосфорильованих лінійних діенамінів 40a-в з високими виходами. Нам не вдалося провести відновлення за літературними методиками ні фосфіноксиду 40a, ні фосфінтіооксиду 40б до відповідного фосфіну 41. Тому наш вибір зупинився на селеновій похідній. Нагрівання фосфінселеніду 40в у бензені з гексаметилфосфотриамідом приводить з високими виходами до фосфіну 41, який надалі був in situ перетворений у фосфонієві солі 65 взаємодією з алкілгалогенідами.

Для отримання фосфагексатриенових систем солі 42 були оброблені сильною основою. Так, нагрівання солей 42a-в у ДМФА при 130°С з 2 еквівалентами діазобіциклоундецену (ДБУ) в усіх трьох випадках приводить до утворення цільових фосфінінів 44a-в. Вихід останніх в значній мірі залежить від структури замісника R. Зокрема, бензилфосфонієва сіль 42в реагує за 30 хв. з 70% виходом, натомість метилфосфонієва сіль 42a у таких самих умовах після 4 год перетворюється у фосфінін 44a з виходом 50%, а етилфосфонієва сіль 42б реагує при довготривалому нагріванні не селективно і після 10 год у реакційній суміші фіксуються тільки слідові кількості фосфініну 44б.

Таким чином, при дії основи солі 42 перетворюються у проміжні іліди 43 – 5-фосфагексатріенові системи, які зазнають електроциклізації. Нещодавно, в публікаціях присвячених дослідженням електроциклізацій 1-аміно-1,3,5-гексатриенів чітко показано, що електроно-акцепторні замісники в положеннях 2 та 4 значно знижують бар’єр активації електроциклічного закриття циклу. В цьому є аналогія з нашими результатами, оскільки проміжні сполуки 43 містять нітрильну групу в положенні 4 та атом водню, метильну або фенільну групи в положенні 6, відповідно. При цьому циклізація найбільш легко проходить для солі 42в, яка містить фенільну групу в положенні 6.

Введення в положення 6 фосфагексатриенової системи ще більш акцепторного фенацилу, алкілуванням фосфіну 41 2-бромоацетофенонами, приводить до спонтанної циклізації і нам не вдається зафіксувати навіть проміжну фосфонієву сіль.

Для синтезу діенамінових солей 42 була також досліджена реакція фосфонієвих солей 46a-в, 47a-в, 48а-в (отриманих при алкілуванні згаданих вище фосфіну 17а та фосфаміду ) з ДМАДМФ, проте їх взаємодія приводить безпосередньо до утворення похідних л5-фосфінінів 44,45 та 49.

Виходячи з того, що л5-фосфініни 44 утворюються при дії основ на солі 42, ми припустили, що у реакціях з солями 46-48, ДМАДМФ виступає не тільки як реагент, а як і сильна основа, що узгоджується з літературними даними.

Для перевірки цього припущення ми випробували солі 42 в умовах, при яких відбувався синтез фосфінінів із солей 46, а саме, нагріванню у ДМАДМФ. Неочікувано, поведінка цих солей виявилась відмінною. Так, сіль 42в після 4 год нагрівання дає цільовий фосфінін 44в з виходом 55%. При переході до етильної похідної 42б, результатом 5-ти денного нагрівання були слідові кількості фосфініну 44б разом з розкладом вихідної солі. І нарешті реакція з метилфосфонієвою сіллю 42a приводить до утворення двох продуктів майже в однакових кількостях, серед яких основним продуктом був очікуваний фосфінін 44a, а другим продуктом виявилось формільована похідна 50.

Утворення формільованого продукту 50 вписується в схему реакції при якій вклинення диметиламінометиленової групи проходить по метильній групі біля атома фосфору в солі 42а.

Враховуючи вищезазначені результати можна зробити висновок, що при утворенні фосфінінів 44, 45, 49 на початковій стадії проходить вклинення диметиламінометиленової групи в метильну групу біля атому фосфору з утворенням інтермедіату 51, а надалі йде дегідрогалогенізація, електроциклізація та елімінування диметиламіну.