2. Нанокомпозиты, содержащие металлы или полупроводники
Эти материалы привлекают внимание прежде всего уникальными свойствами входящих в их состав кластеров, образованных разным количеством атомов металла или полупроводника — от десяти до нескольких тысяч. Типичные размеры такого агрегата — от 1 до 10 нм, что соответствует огромной удельной поверхности. Подобные наночастицы отличаются по свойствам (ширине полосы поглощения, спектральным характеристикам, электронному переносу) как от блочного материала, так и индивидуального атома или молекулы, причем полупроводниковые особенно сильно, даже если размер частицы достигает сотен нанометров. Так, при переходе от нанокристалла CdS к макрокристаллу ширина запрещенной зоны уменьшается от 4.5 до 2.5 эВ, время жизни на нижнем возбужденном уровне увеличивается от пикосекунд до нескольких наносекунд, от 400 до 1600°С повышается температура плавления. Нелинейные оптические свойства нанокластеров позволяют создавать на их основе управляемые квантовые светодиоды для применения в микроэлектронике и телекоммуникации.
Заполнение электронных уровней в металле и полупроводнике. Энергетическая зона металла, независимо от размера его частиц, заполнена не вся, поэтому электроны могут переходить на более высокие уровни. У полупроводника же валентная зона заполнена целиком и отделена от зоны проводимости на 2—3 эВ. Из-за малых размеров полупроводниковых нанокристаллов эти зоны расщепляются, что приводит к эффективному увеличению ширины запрещенной зоны (до 4.5 эВ).
Наночастицы проявляют также суперпарамагнетизм и каталитические свойства.При использовании кластеров металлов в качестве катализаторов наночастицы стабилизируют, например, в растворе с помощью поверхностно-активных соединений или на подложке из полимерной пленки. Несмотря на сравнительно невысокую термическую стабильность, полимерные материалы довольно часто служат матрицей, фиксирующей нанокластеры. В зависимости от того, какие свойства хотят придать конечному продукту, используют либо прозрачный полимер, либо проницаемый, либо электропроводящий и легко перерабатываемый.
Металлические (и полупроводниковые) нанокластеры можно приготовить по-разному: испарением или распылением металлов, восстановлением их солей и другими способами. В одной из первых работ кластеры серебра, золота или палладия размером 1—15 нм были диспергированы в пленку полистирола (или полиметилметакрилата) в ходе полимеризации жидкого мономера, в который предварительно осаждался металл из паров. Судя по структурным исследованиям, металлические кластеры при этом объединяются в агломераты разной величины — вплоть до нескольких десятков нанометров. Похожую структуру имеют композитные пленки, полученные одновременным осаждением паров металла и плазменной полимеризацией бензола или гексаметилдисилазана.
Мы синтезировали полимерные металлсодержащие нанокомпозиты весьма технологичным способом — совместным осаждением паров металла и/или полупроводника и активного предшественника (пара-циклофана) с последующей его полимеризацией.
Молекулы п-циклофана, проходя через пиролизную зону ~600°С, превращаются в активный интермедиат, который осаждается на холодной подложке вместе с атомами металла или молекулами полупроводника. Затем в реакции термической полимеризации или фотополимеризации образуется поли-п-ксилилен (или его производные), а в полимерной матрице возникают неорганические наночастицы или кластеры размером от 1 до 20 нм (в зависимости от химической структуры предшественника и условий полимеризации). Частицы, характеризующиеся довольно узким распределением по размерам, в основном локализованы в аморфных областях полимера и организованы в сверхрешетку. А это обусловливает многие чрезвычайно важные электрофизические свойства нанокомпозита.
Схема получения нанокомпозиционных пленок (вверху)
и установка для проведения этого процесса. Х — разные заместители.
Такой способ имеет целый ряд преимуществ по сравнению с другими: он позволяет получать тонкие пленки, содержащие атомы разных металлов и других веществ (например, фуллерен С60); легко варьировать концентрацию компонентов; создавать нанокомпозиты высокой чистоты. Оказалось, что синтезированные этим методом нанокомпозиты на основе разных металлов или полупроводников и поли-п-ксилилена обладают необычными фотофизическими, магнитными, каталитическими и сенсорными свойствами. Примечательно, что все они, как выяснилось, определяются концентрацией неорганической составляющей. При низком содержании металла наночастицы не взаимодействуют между собой, поскольку разделены матрицей. В этом случае электросопротивление исследуемых пленок максимально — ~1012 Ом. Если концентрацию металла увеличить настолько, чтобы возникла перколяция – обмен зарядами между его наночастицами, сопротивление образцов может снизиться до 100 Ом.
Проведя не одну серию опытов, мы убедились, что металлсодержащие полимерные нанокомпозиты с такими крайними свойствами по-разному проявляют себя и в каталитических реакциях. В частности, при низком содержании палладия в композиционном материале в катализируемой этим металлом изомеризации 3,4-дихлорбутена цис-1,4-изомера образуется в 10 раз больше, чем трансформы. (Заметим, такое же соотношение бывает в реакции, когда катализатором служит массивная пластинка палладия.) При высокой концентрации палладия выход трансформы увеличивается втрое.
Поведение в магнитном поле нашего полимерного нанокомпозита проявляет сходный характер. Так, при высоком содержании в нем железа магнитосопротивление на 40% ниже, чем при низкой концентрации.
Проиллюстрируем еще и сенсорный эффект. Композитная пленка с наночастицами оксида свинца проявляет очень высокую чувствительность к аммиаку, содержащемуся в атмосфере. В его присутствии электрическая проводимость пленки меняется на несколько порядков величины в области концентраций аммиака, измеряемых миллионными долями. Примечательно, что эти изменения обратимы: если аммиак удалить из атмосферы, проводимость пленки возвращается к исходной величине.