Потенциал ионизации свободных молекул, из которых состоят продукты детонации, I = (12-15) эВ. Эффективный потенциал ионизации будет Ieff = (7-10) эВ. Для указанного Ieff формула Саха
даёт концентрацию электронов n, лежащую в пределах 1017 см-3³n³ 1014 см-3. Эти значения концентрации для равновесных продуктов детонации взрывчатых веществ типа октогена, гексогена, тэна. В продуктах детонации тротила концентрации будут несколько другими.
Тротил отличается от рассмотренных веществ повышенным содержанием свободного, химически не связанного углерода, конденсирующегося в углеродные частицы, в том числе и в частицы ультрадисперсного алмаза. Мы считаем, что конденсация углерода происходит не «мгновенно» [22] в зоне химической реакции, а продолжается в невозмущённых продуктах детонации и при разлёте. Об этом свидетельствуют результаты экспериментов по малоугловому рентгеновскому рассеянию в детонационной волне в тротиле [39,40] и по нашим представлениям о поведении электропроводности в детонационной волне.
Каждая молекула тротила имеет 7 атомов углерода. В продуктах детонации их концентрациябудет nС = 7ρ0N0/μ. Согласно [41] конденсированный углерод составляет практически 20% от веса заряда, что соответствует концентрации химически не связанных свободных атомов углерода ≈ 2·1022 см-3.
Изолированный атом углерода имеет потенциал ионизации I = 11,25 эВ. Эффективный потенциал ионизации будем считать Ieff= (6–7) эВ. Формула Саха дает оценку плотности электронов в продуктах детонации тротила 1017 см-3³n³ 1016 см-3.
Для оценок температуру в плоскости Чепмена – Жуге будем считать
Т = 3,5·103 К. При максимальной плотности электронов n = 1017 см-3 температура их вырождения [19] T* = 4,35·1011·n2/3 = 10 К << T. Электронный газ не вырожден и подчиняется статистике Больцмана. Тепловая скорость электронов v = 4·107 см/с. Этой скорости соответствует длина волны электрона λ = h/p = 2 ·10-7 см ( h – постоянная Планка, p = mv – импульс электрона ). Длина волны электрона на порядок превосходит размер частиц и межчастичные расстояния. В силу этого взаимодействие электронов с молекулами продуктов детонации будет носить существенно квантовый характер. Рассмотрение [31] упругого рассеяния электронов на молекулах с сечением равным газокинетическому ≈ 10-15 см2 неправомерно.
Введём длину свободного пробега l электронов. Согласно [41] по своему физическому смыслу длина волны электрона не может быть больше или порядка длины свободного пробега. Для свободных электронов l >> λ = 2·10-7 см. Мы получили оценку длины свободного пробега снизу. Кроме того, соотношение l >> λ позволяет считать движение электрона квазиклассическим.
Оценку длины свободного пробега сверху можно получить из экспериментальных результатов по электрическому пробою равновесных продуктов детонации. Согласно [34,35] можно считать электрическую прочность равновесных продуктов детонации Е ≈ 106 В/см. Тогда с учётом снижения потенциала ионизации для длины свободного пробега электрона li по отношению к ионизации получим оценку li = Ieff/eE
В обычных случаях li³l . Таким образом в равновесных продуктах детонации 10-5 см³l >> 2·10-7 см.
Если, равновесные продукты детонации считать подчиняющимися закономерностям твёрдого тела, то рассеивающими образованиями могут быть фононы с длинами волн λf³2λ. В этом случае сечение рассеяния будет plf2/4. Усреднённое по Дебаевскому спектру оно приводит к длине свободного пробега электрона l = 4naλ4/π3≈ 2·10-5 см. Мы для оценок будем пользоваться значением l в пределах 10-5 см³l>> 2·10-7 см.
При максимально возможной плотности электронов n = 1017 см-3 расстояние между заряженными частицами aе = (n)-1/3 ≈ 2·10-6 см. Поскольку ae >> λ, электроны можно считать независимыми. Энергия взаимодействия зарядов друг с другом W = e2/ae ≈ 7·10-2 эВ < kT = 0,3 эВ. Электронный газ будем считать идеальным. Дебаевский радиус экранирования
Формула Друде-Зоммерфельда вместе с полученным ранее выражением для длины свободного пробега электрона при рассеянии на фононах удовлетворительно объясняет поведение электропроводности продуктов детонации октогена, гексогена и тэна в волне разгрузки. На начальном этапе разгрузки, из-за основной составляющей упругой части внутренней энергии продуктов детонации, происходит значительное падение концентрации электронов и атомов, что приводит к убыли электропроводности. Температура продуктов детонации изменяется в начале незначительно. Формула Друде-Зоммерфельда объясняет увеличение электропроводности продуктов детонации в пересжатых детонационных волнах.
В тротиле при 1017 см-3³n³ 1016 см-3 и l£ 10-5 см электропроводность σ£ (0,1-10) Ом-1∙см-1. Полученные значения электропроводности также позволяют считать, что и в тротиле необходимые концентрации электронов могут возникать в результате термической ионизации в основном свободного углерода.
Конденсация свободного углерода в продуктах детонации тротила может приводить к изменению механизма проводимости. При достижении размера частиц конденсированного углерода d£ λ = 2·10-7 см они будут являться центрами рассеяния и поглощения электронов. Поскольку d ≈ λ, будем считать вероятность поглощения малой.
Исследования синтеза ультрадисперсных алмазов [41], образующихся в детонационной волне в тротиле и его сплавах с гексогеном, показали, что их средний размер практически не зависит от условий проведения экспериментов и составляет d³ (4-5)·10-7 см. Если считать, что и другие частицы конденсированного углерода имеют такой же размер, то для плотности nкчастиц конденсированного углерода получим nk ≈ (1019 – 1018) см-3. Алмазы получены после обработки сохранённых продуктов детонации в кислотах, следовательно, следует считать спектр частиц по размерам более широким, а концентрацию частиц nk > (1019 – 1018) см-3.
При размере конденсированных частиц углерода d > λ ≈ 2 ·10-7 «квантовый» для молекул электрон становится «классическим» для частиц конденсированного углерода. Длина свободного пробега l электрона будет определяться рассеянием на конденсированных частицах, их сечением и плотностью lk = 4/(nkπd2), откуда для электропроводности σ получим выражение
Поглотившая электрон частица создаёт вокруг себя электрическое поле ~ 4e/d2. Дебаевский радиус экранирования r» 10-6 см оказывается того же порядка, что и расстояние между конденсированными частицами (nk)-1/3 ≈ 10-6 см. Частицы конденсированного углерода, поглотившие электрон, не экранированы. Возникает ионный ток на конденсированную частицу. Характерное время нейтрализации частицы будет τn = 1/(4πσi), где σi– ионная (С+) электропроводность. Считая, что ионы рассеиваются на нейтральных молекулах с газокинетическим сечением ≈ 10-15 см2, а их плотность ni = n, получим оценку для времени нейтрализации τn ≈ (10-9 - 10-8)с, что значительно меньше характерных детонационных времён и позволяет считать частицы конденсированной фазы в любой момент времени нейтральными.