Смекни!
smekni.com

Роль свободных радикалов в природной среде (стр. 5 из 7)

Тем не менее, главную опасность, по общему мнению, несут ХФУ. Учитывая это, во многих странах законодательно введены ограничения на использование фторхлорметанов. Это же стимулировало работы по замене ХФУ на вещества с близкими потребительскими свойствами, не представляющими опасность для озона.

В качестве таких заменителей предложены F-Cl углеводороды CHFCl2 (фреон 21), CHF2Cl (фреон 22) и другие. Их отличие от ФХУ заключается в возможности разрушения в тропосфере (тропосферный сток) по реакции с ОН (на примере фреона 22):

Существование такого стока значительно уменьшает их время жизни в тропосфере и делает их менее опасными для стратосферы. Вместе с тем, тропосферный сток фреонов-заменителей зависит от концентрации ОН, который участвует в реакциях с у/в и с СО. Поэтому увеличение поступления у/в и СО в атмосферу в результате антропогенной деятельности может привести снижению скорости разложения фреонов.

Еще одна проблема разложения F, Cl-углеводородов - образование токсичных веществ в ходе превращения радикалов, образующихся по реакции фреонов с ОН, например:

а) при взаимодействии с молекулярным кислородом

- образование пероксидного радикала

б) его взаимодействие с NO

в) образование дифторфосгена – чрезвычайно токсичный и опасный для всех живых организмов, поэтому замена ХФУ F,Cl углеводороды в общем-то не устраняет совсем угрозы озонового слоя и порождает новую экологическую проблему.

О=СF2

3.2 Химические процессы в тропосфере

Тропосферы достигает УФ излучение достаточно низкой энергии с λ>300 нм, поскольку более коротковолновые практически полностью поглощаются в более высших слоях в процессах фотодиссоциации О2 и О3.

УФ-излучение низкой энергии не вызывает фотохимических реакций основных компонентов, т.е. О2 и N2. Реакции с участием основных компонентов могут протекать например при газовых разрядах


И затем доокисляя

Но в фотохимических реакциях в тропосфере участвуют ряд примесей, средняя концентрация которых в атмосфере мала, но локальная может быть значительной в результате активной хозяйственной деятельности – это прежде всего NOx, у/в, озон.

В тропосфере образуется и накапливается сильный окислитель озон, но по механизму, отличающемуся от стратосферного, где к образованию озона приводит атом О(3р), образующийся при фотодиссоциации О2.

Озон в тропосфере образуется в фотолитическом цикле диоксида азота.

NO2 поступает в атмосферу в значительных количествах от стационарных и передвижных источников, сжигающих органическое топливо непосредственно при сжигании образуется NOx, который постепенно доокисляется до NO2 [

]

NO2 легко диссоциирует под действием УФ-излучения с λ<380 нм

(1)

– это одна из наиболее важных фотохиических реакций в тропосфере, приводящая к образованию активного атома О

Далее по известной реакции образуется озон:

(2)

Затем озон окисляет NO в NO2 и цикл замыкается


(3)

NO2 может выводится из цикла по разным реакциям, например, окисляясь в азотную кислоту в капельной фазе атмосферной влаги

Либо гидролизуясь в газовой фазе:

- это реакция равновесная

Три реакции (1-3) фотолитического цикла NO2 протекают очень быстро и их комбинация должна определять некоторый постоянный уровень концентрации озона в нижних слоях атмосферы.

Однако измерения показывают, что фактическая концентрация О3 в атмосфере городов могут примерно на порядок превышать те, что следуют из фотолитичского цикла NO2, т.е. очевидно есть еще какой то альтернативный механизм окисления NO в NO2.

3.2.1 Роль углеводородов в тропосферных фотохимических процессах

В атмосферу поступают разнообразные по строению и молекулярной массе углеводороды. Прежде всего это СН4, выделяющийся в естественных процессах (микробиологическая активность в почвах, и антропогенного происхождения. С продуктами сгорания топлив в ДВС, стационарных установках в атмосферу выбрасывается большой набор разных по строению веществ – алканы, алкены, ароматические углеводороды.

У/в в атмосфере окисляются активными компонентами – атомарным О, О3 и гидроксильным радикалом, который играет исключительно важную роль в химических превращениях загрязняющих веществ в тропосфере.

Окисление у/в протекает по радикальному механизму через образование на одной из стадий пероксидного радикала

способного окислять NO:

(алкоксильный радикал)

Эта реакция ускоряет образование NO2 и включение его в фотолитический цикл. При этом скорость данной реакции значительно больше, чем скорость реакции, в которой расходуется окислитель озон (

)

Это и приводит к накоплению озона.

Окислители у/в – атомарный О и О3 образуются в рассмотренном фотолитическом цикле NO2 . Атомарный О в основном участвует в образовании озона, но частично может расходоваться на реакции с у/в

Гидроксильный радикал образуется:

1) главным образом по реакции с Н2О атомарного О(1Д), выделяющегося при фотолизе озона (в основном эта реакция идет в верхних слоях тропосферы, куда проникает излучение с λ<300 нм)

2) дополнительное количество ОН радикала в тропосфере дает реакция О3 с НО2, который образуется по нескольким реакциям (о них ниже)


3) и кроме того ОН радикалы, хотя и начинают процесс окисления у/в, т.е. в начале расходуются, но в этих же процессах и накапливаются в условиях загрязненной антропогенными выбросами атмосферы

ОН-радикал наиболее важный окислитель в тропосфере, он начинает большинство многостадийных процессов окисления у/в и других примесей.

Окисление метана и его гомологов

Окисление метана инициируется ОН-радикалом. В последующем в процесс включается молекулярный О2. Сопряжено с окислением СН4 идет окисление NO (т.е. NO включается в цепочку реакций на одной из стадий)

Начальная стадия

Взаимодействие алкильного (метильного) радикала с О2 дает пероксильный радикал:

,

который как отмечалось определяет альтернативный механизм окисления NO в NO2 (вместо окислителя О3)

Т.е.


Взаимодействие радикала

с О2 приводит к образованию формальдегида и гидропероксидного радикала

Образующийся NO2 включается в фотолитический цикл

Что приводит к образованию озона

Гидропероксидный радикал окисляет NO ( как и

)

,

генерируя ОН радикал

Таким образом процесс окисления СН4 (и углеводородов вообще) – совокупность реакций, инициируемых солнечным излучение с λ=300-400 нм (которые приводят к О, ОН, НО2), протекающий при участии NO и приводящий к накоплению окислителей О3,ОН

Окисление у/в в этом процесс сопровождается также вторичным загрязнением атмосферы оксидом углерода, которые образуется при превращении СН2О (что по масштабности сопоставимо с выбросами СО при сжигании топлива)


Окисление

НО2 также дает другая реакции