Федеральное агентство по образованию
ФГАОУ ВПО "Уральский федеральный университет
имени первого Президента России Б.Н.Ельцина"
Курсовой проект
по курсу химии окружающей среды
Роль свободных радикалов в природной среде
Екатеринбург 2010
РЕФЕРАТ
СВОБОДНЫЕ РАДИКАЛЫ ОКИСЛЕНИЕ АТМОСФЕРА ПЕРОКСИД ГИДРОКСИЛ ОКСИДЫ АЗОТА ПРОБА КИСЛОТЫ ФЕРМЕНТЫ КАТАЛИЗАТОРЫ
В работе рассказывается об общем строении свободных радикалов, их свойствах и значение в природной среде. Отдельное внимание уделяется рассмотрению химических реакций с участием радикалов в атмосфере и живых организмах. Описываются процессы, происходящие при участии свободных радикалов в различных средах и их роль.
ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ
1.ОБЩАЯ ХАРАКТЕРИСТИКА И НОМЕНКЛАТУРА СВОБОДНЫХ РАДИКАЛОВ
1.1Что такое свободные радикалы
1.2Номенклатура радикалов
1.3Классификация радикалов
1.3.1Первичные радикалы и реактивные молекулы
1.3.2Вторичные и третичные радикалы
2.РЕАКЦИИ С УЧАСТИЕМ СВОБОДНЫХ РАДИКАЛОВ В РЕЧНЫХ СИСТЕМАХ
2.1Наблюдения и эксперименты
2.2Результаты исследования
2.3Анализ результатов
3.СВОБОДНОРАДИКАЛЬНЫЕ РЕАКЦИИ В АТМОСФЕРЕ
3.1Реакции в стратосфере
3.2Химические процессы в тропосфере
3.2.1Роль углеводородов в тропосферных фотохимических процессах
4.СВОБОДНОРАДИКАЛЬНЫЕ РЕАКЦИИ В БИОЛОГИЧЕСКИХ СИСТЕМАХ
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ
Вся природа, окружающая нас, состоит из химических веществ и их соединений различной структуры. Их все можно разделить на различные группы по самым разнообразным признакам: состав, строение, роль в биологических системах и так далее. В своей работе я рассматриваю такую группу веществ, как свободные радикалы. Мой интерес вызван их широчайшей дифференциацией и повсеместным нахождением во всех компонентах биосферы.
Высокая реакционная способность свободных радикалов обуславливает большое количество химических реакций, которые происходят с различными элементами окружающей среды. Все они играют определенную роль в природных процессах.
В этой работе рассматриваются химические реакции с участием свободных радикалов и их участие в антропогенных и биологических циклах отдельные компонентов окружающей среды.
1. ОБЩАЯ ХАРАКТЕРИСТИКА И НОМЕНКЛАТУРА СВОБОДНЫХ РАДИКАЛОВ
1.1 Что такое свободные радикалы
Хорошо известно, что в органических молекулах (включая те, из которых состоит наш организм) электроны на внешней электронной оболочке располагаются парами: одна пара на каждой орбитали (рис. 1)
Свободные радикалы отличаются от обычных молекул тем, что у них на внешней электронной оболочке имеется неспаренный (одиночный) электрон (рис. 2 и 3).
Рисунок 1.1. Электронная структура молекулы метанол
Рисунок 1.2. Электронная структура радикала метанола
Неспаренный электрон в радикалах принято обозначать точкой. Например, радикал гидроксила обозначают как HO·, радикал перекиси водорода как HOO·, радикал супероксида как ·OO- или O2·-. Ниже даны формулы трех радикалов этилового спирта: CH3CH2O·; CH3·CHOH; CH3CH2O·
Итак:
· Свободным радикалом называется частица - атом или молекула, имеющая на внешней оболочке один или несколько неспаренных электронов.
· Это делает радикалы химически активными, поскольку радикал стремится либо вернуть себе недостающий электрон, отняв его от окружающих молекул, либо избавиться от "лишнего" электрона, отдавая его другим молекулам.
· В особом положении оказалась молекула кислорода (диоксигена), которая содержит на внешней оболочке целых два неспаренных электрона. Таким образом, диоксиген - это бирадикал и, подобно другим радикалам, обладает высокой реакционной способностью.
Рисунок 1.3. Электронная структура некоторых молекул и радикалов
Важно подчеркнуть, что неспаренные электроны должны находиться на внешней оболочке атома или молекулы. В понятие свободного радикала не включаются ионы металлов переменной валентности, неспаренные электроны в которых находятся на внутренних оболочках. Поскольку и радикалы и ионы таких металлов как железо, медь или марганец (так же как комплексы этих металлов) дают сигналы электронного парамагнитного резонанса (ЭПР), эти частицы в совокаупности часто называют парамагнитными центрами.
Образование радикалов из устойчивых молекул обусловлено, таким образом, появлением на свободной, валентной орбитали нового электрона или наоборот - удалением одного электрона из электронной пары. Эти процессы обычно происходят в результате реакций одноэлектронного окисления или восстановления. В таких реакциях обычно участвует, наряду с молекулой, из которой радиукал образуется, ион металла переменной валентности, который ка раз и служит донором или акцептором одного электрона (а не двух сразу, как это бывает в реакиях между двумя органическими молекулами или между органической молекулой и кислородом). Типичный пример реакции, в которой образуется радикал - это реакция Фентон: взаимодействие пероксида водорода с ионом двухвалентного железа:
Fe2+ + H2O2 => Fe3+ + OH- + ·OH (радикал гидроксила)
При высоких температурах или под действием ультрафиолетового излучения радикалы могут образовываться также в результате разрыва химической связи (гомолитическое расщепление). В обычных условиях такие реакции в нормальных живых клетках практически не имеют места.
Относительно недавно Комиссия по Номенклатуре Неорганической химии сформулировала основные правила номенклатуры радикалов [1] (табл. 1).
Таблица 1. Названия некоторых радикалов и молекул согласно рекомендациям Комиссии по Номенклатуре Неорганической Химии (1990).
Формула | Структурная формула | Название радикала |
O·- | ·O- | Оксид (1-), [оксид] |
О2 | ·ОО· | [Диоксиген] |
О2·- | ·ОО- | Диоксид (1-), супероксид, [диоксид] |
O3 | Триоксиген, [озон] | |
°O3·- | ·OOO- | Триоксид (1-), озонид |
HO· | HO· или ·OH | [Гидроксил] |
HO2· | HOO· | Гидродиоксид, [гидродиоксил] |
Н202 | HOOH | [Перекись водорода] |
RO· | RO· | [Алкоксил] |
C2H5O· | CH3CH2O· | [Этоксил] |
R02· | ROO· | [Алкилдиоксил] |
RO2H | ROOH | [Апкилгидропероксид] |
Остановимся на некоторых из этих рекомендаций. Прежде всего нет необходимости писать "свободный" перед словом радикал [533]. О радикальной природе рассматриваемой частицы говорит окончание "ил". Так радикалы RO· и НО· имеют наименование, соответственно "алкоксил" и "гидроксил".
Существенно новым можно считать рекомендацию не злоупотреблять производными от "пероксид" и "гидропероксид". Группа из двух связанных между собой атомов кислорода называется "диоксид". В соответствии с этим радикал ROO· рекомендуется называть "алкилдиоксилом" {Koppenol, 1990 #7}. Допускается сохранение и альтернативного названия "алкилпероксил", но это хуже {Koppenol, 1990 #7}. Молекулярный кислород называется "диоксигеном", а озон - "триоксигеном".
Наименование с окончанием "ил" весьма удобно, но ничего не горит о том, каков заряд частицы. Поэтому в необходимых случаях рекомендуется использовать систематическое название радикала, где после названия группы дается в скобках заряд. Например радикал O2·- имеет наименование "диоксид (1-)". В этой работе мы будем использовать более краткое название "диоксид".При написании формул радикалов в суперскрипте сначала ставится точка, указывающая на наличие неспаренного электрона у данного атома, а затем знак заряда иона. Например "O2·-". В структурных формулах точка должна стоять именно у того атома, где локализован неспаренный электрон. Например, чтобы подчеркнуть, что диоксиген имеет два неспаренных электрона, можно написать его формулу таким образом "О2". В таблице 1 приведен список рекомендуемых названий радикалов; в квадратных скобках даны названия, которые будут преимущественно использованы в данной книге.
1.3.1 Первичные радикалы и реактивные молекулы
Все радикалы, образующиеся в человеческом организме, можно разделить на природные и чужеродные. В свою очередь природные радикалы можно разделить на первичные, вторичные и третичные (См. схему на рис. 4).
Рисунок 1.4. Классификация свободных радикалов, образующихся в нашем организме
Первичными можно назвать радикалы, образование которых осуществляется при участии определенных ферментных систем. Прежде всего к ним относятся радикалы (семихиноны), образующиеся в реакциях таких переносчиков электронов, как коэнзим Q (обозначим радикал как Q·) и флавопротеины. Два других радикала - супероксид (·OO-) и монооксид азота (·NO) также выполняют полезные для организма функции, которые будут подробнее рассмотрены в соответствующих разделах.
Из первичного радикала - супероксида, а также в результате других реакций, в организме образуются весьма активные молекулярные соединения: перекись водорода, гипохлорит и гидроперекиси липидов (см. рис. 5). Такие молекулы, наряду с радикалами, получили в англоязычной литературе название "reactive species", что в русской литературе чаще всего переводится как "активные формы". Чтобы провести водораздел между радикалами и молекулярными продуктами, мы предлагаем называть последние "реактивными молекулами". Таким образом, предлагается такая терминология: