Смекни!
smekni.com

Поиск оптимального содержания пигмента в покрытиях на основе алкидного лака ПФ-060 (стр. 2 из 14)

Как правило, силикаты являются тугоплавкими и химически пассивными веществами, плохо или практически нерастворимыми в воде. В зависимости от температуры они могут быть газообразными, жидкими (расплавленными) и твердыми, а также образовывать высокодисперсные (коллоидные) системы с размером частиц силикатов 10- 6-10- 9 м. В отличие от растворов в коллоидах имеется поверхность раздела между частицами силикатов и дисперсионной средой. Халцедоны и опалы (SiO2 ∙ nH2O), в которых вода (ее содержание непостоянно) является дисперсионной средой, - пример таких систем. Спектр химического состава силикатов чрезвычайно широк. Это и алюмосиликаты, то есть силикаты, в которых часть атомов кремния замещена на атомы алюминия, и гидросиликаты - силикаты, содержащие воду, и другие. Силикаты могут иметь как природное, так и искусственное происхождение.

1.3 Природные силикаты

Известна роль силикатов в строении земного шара. По современным представлениям земной шар состоит из ряда оболочек, наружная из которых, земная кора, или литосфера, образована гранитной, базальтовой оболочками и тонким осадочным слоем. Гранитная оболочка в основном состоит из гранита - плотных сростков из полевых шпатов, слюды, амфиболов и пироксенов, а базальтовая - из таких гранитоподобных, но более тяжелых силикатных пород, как габбро, диабазы и базальты. Составной частью осадочного слоя являются, в частности, глины, основа которых - силикатный минерал каолинит. Таким образом, литосфера на 95 мас. % образована силикатами.

Природные силикаты играют важную роль в качестве сырья и конечных продуктов в промышленных процессах [10]. Алюмосиликаты - плагиоклазы, калиевый полевой шпат и кремнезем используются как сырье в керамической, стекольной и цементной промышленности. Для изготовления несгораемых и обладающих электроизоляционными свойствами текстильных изделий (ткани, шнуры, канаты) широко используются асбесты, относящиеся к гидросиликатам - амфиболам. Некоторые виды асбестов обладают высокой кислотостойкостью и применяются в химической промышленности. Биотиты, представители группы слюд, используются как электро- и теплоизоляционные материалы в строительстве и приборостроении. Пироксены применяются в металлургии и каменно-литейном производстве, а пироксен LiAl[Si2O6] - для получения металлического лития. Пироксены являются составной частью доменных шлаков и шлаков цветной металлургии, которые, в свою очередь, также используются в народном хозяйстве. Такие горные породы, как граниты, базальты, габбро, диабазы, являются прекрасными строительными материалами.


1.4 Искусственные силикаты

Наиболее древними искусственными силикатными материалами являются керамические, получаемые из глин и их смесей с различными минеральными добавками, обожженными до камневидного состояния [11].

Благодаря экономичности производства, высоким физико-механическим и художественно-декоративным качествам, керамические материалы широко используются как строительные и декоративные. Это кирпич, пустотелые блоки для стен, перегородок, перекрытий, облицовочные плитки, изразцы, терракотовые и майоликовые детали в архитектуре, канализационные и дренажные трубы.

Огнеупорная керамика используется в производстве металлов, цемента, стекла, для кладки высокотемпературных печей, футеровки их внутренних поверхностей.

Химически стойкие керамики заменяют или защищают металлы в производствах, связанных с агрессивными средами, например в химической промышленности.

Тонкая керамика включает в себя изделия из фарфора и фаянса. К ним относятся бытовая и химическая посуда, художественные изделия, изоляторы.

Примером искусственного силикатного материала является портландцемент [12], один из наиболее распространенных видов минеральных вяжущих веществ. Цемент используется для связывания строительных деталей при получении массивных строительных блоков, плит, труб и кирпича. Цемент является основой таких широко применяемых строительных материалов, как бетон, шлакобетон, железобетон. Цементным клинкером называется продукт обжига смеси глины и известняка, а цементом - мелкоизмельченный клинкер с минеральными добавками, регулирующими его свойства. Его вяжущие свойства обусловлены способностью цементных минералов взаимодействовать с H2O и SiO2 и при этом затвердевать, образуя прочную камневидную структуру. При схватывании цемента происходят сложные процессы: гидратация минералов с образованием гидросиликатов и гидроалюминатов, гидролиз, образование коллоидных растворов и их кристаллизация. Исследования процессов твердения цементного раствора и минералов цементного клинкера сыграли большую роль в становлении науки о силикатах и их технологии.

1.5 Строение силикатов

Установлено, что основным структурным звеном силикатов является атом кремния, окруженный четырьмя атомами кислорода, - кремнекислородный тетраэдр SiO4 [13]. Многообразие же силикатов объясняется разными способами соединения этих тетраэдров, которые обычно сочленяются вершинами с образованием связей Si-O-Si и Si-O-Al. Атомы кислорода, соединяющие тетраэдры, называются мостиковыми, а не соединяющие - немостиковыми. Различают следующие типы кремнекислородных радикалов:

1. ортосиликаты - соединения, в которых имеются изолированные кремнекислородные тетраэдры [SiO4]4 -, то есть все атомы кислорода немостиковые;

2. соединения с «островными» радикалами, такими, как [Si2O7]6 - (пиросиликатный ион, в котором два тетраэдра сочленяются вершинам), кольцевые радикалы, состоящие из трех [Si3O6]6 -, четырех [Si4O12]8 - и шести [Si6O18]12 - тетраэдров, в каждом из которых два атома кислорода используются для образования кольца, а два других - немостиковые;

3. соединения, построенные из изолированных [SiO3]2 - и сдвоенных [Si4O11]6 - бесконечных цепочек;

4. слоистые структуры, образованные радикалами [Si2O5]2 . К их числу относятся слюды и глины, содержащие в своей структуре группировки [Z4O10], где Z - Si и Al в четверной координации относительно кислорода. В слюдах слои состоят из шестичленных колец, построенных из алюмо- и кремнекислородных тетраэдров. Слоистых силикатов существует множество: слои могут быть построены из пяти- и шестичленных колец, состоять из чередующихся в определенном отношении восьми- и пятичленных колец, могут существовать слои, в которых кремнекислородный тетраэдр необязательно имеет три мостиковых атома кислорода, и другие;

5. каркасные структуры. Примером каркасных силикатов могут служить кремнезем и полевые шпаты. Полевые шпаты делятся на плагиоклазы (непрерывный ряд твердых растворов в системе альбит-анортит (NaAlSi3O8-CaAl2Si2O8)) и калиевый полевой шпат K[AlSi3O8] [14]. Их структура представляет собой бесконечный объемно-увязанный каркас из тетраэдров SiO4 и AlO4 , в пустотах которого расположены ионы Na, Ca, K. Сам же кремнезем - это вязь из кремнекислородных тетраэдров.

В структурах силикатов установлено значительное число различных типов цепочек, лент, сеток и каркасов из тетраэдров. По составу тетраэдрических радикалов различаются простые силикаты с кремнекислородным радикалом [SiO4]4- и сложные силикаты, в которых вместе с [SiO4]4- присутствуют тетраэдрические группы алюминия (алюмосиликаты), бериллия (бериллосиликаты), бора (боросиликаты), титана (титаносиликаты), циркония (цирконосиликаты), урана (ураносиликаты). Наряду с этим выделяются силикаты Al, Be, Ti, Zr, в которых эти элементы играют роль таких же катионов, как Mg, Fe и другие, соединяясь с кремнекислородными тетраэдрами не вершинами, а ребрами или через вершины, поделенные между двумя тетраэдрами.

Катионы, входящие в состав силикатов, разделяются на 2 группы: малые катионы — Mg2+, Al3+, Fe2+, Mn2+ и другие, частично Ca2+, имеющие обычно октаэдрическую координацию, и крупные катионы — К+, Na+, Ca2+, Ba2+, Sr2+, редкоземельных элементов, образующие соответственно более крупные координационные полиэдры: 8-, 9-, 12-вершинники, ребра которых соизмеримы уже с размерами не одиночных [SiO4]4- тетраэдров, а групп [Si2O7]6.

Для силикатов характерен изоморфизм, проявляющийся особенно широко среди катионов. Вследствие этого в силикатах распространены ряды твёрдых растворов (непрерывные или со значительными пределами замещений), а также изоморфные примеси [15]. Поэтому даже развёрнутые формулы силикатов, учитывающие основные изоморфные замещения, всё же являются неполными вследствие большой сложности состава реальных силикатов. Распределение изоморфных катионов в структуре силикатов зависит от температуры и устанавливается рентгенографически или по мессбауэровским и инфракрасным спектрам. Это свойство позволяет использовать силикаты в качестве геотермометра.

В составе силикатов отмечается разнообразие форм вхождения в их структуру водорода — в виде гидроксильных групп, кристаллизационной и цеолитной воды, межслоевой адсорбированной воды и других, изучаемых с помощью ядерного магнитного резонанса, термического анализа, инфракрасной спектроскопии. Во всех подклассах силикатов выделяются группы с добавочными анионами (O2-, F-, CI-, OH- S2-) и радикалами (SO42-, CO32-).

Дальнейшие усложнения в строении силикатов связаны с явлениями упорядочения (особенно Al — Si в алюмосиликатах и Mg — Fe в оливинах, пироксенах, амфиболах), политипии и смешаннослойных прорастаний (в слоистых силикатах), полиморфных превращений (например, андалузит — дистен — силлиманит), распада твёрдых растворов, образования электронно-дырочных центров.

Большинство силикатов в связи с их сложным строением имеет низкую симметрию [16]: около 45% кристаллизуется в моноклинной, 20% имеют ромбическую симметрию, 9% — триклинную, 7% — тетрагональную, 10% — тригональную и гексагональную и 9% — кубическую.