Горизонтальная ориентация частиц микроталька, имеющих чешуйчатую структуру, является наиболее эффективной с точки зрения барьерной защиты от проникновения воды и агрессивных компонентов окружающей среды к субстрату. Ценной особенностью микроталька как наполнителя лакокрасочных систем является способность хорошо смачиваться неводными пленкообразующими веществами, способствовать упрочнению пленок, улучшать адгезию и в определенной степени придавать композиции тиксотропность. Объемная доля микроталька в покрытии ограничивается возможностью нарушения горизонтального расположения его частиц в пленке.
Кальцит обладает малой химической активностью и низкой гидрофильностью, способствует предотвращению растрескивания покрытий, повышает их твердость и прочность. При расчете рецептур грунтовочных композиций исходили из фиксированного соотношения микроталька и кальцита 1:4.
Составы пигментной части были рассчитаны с помощью программы Minitab14.0, разработанной DuPont(Центр технологии и управления качеством). Значения рассчитанных составов пигментной части приведены в таблице 5.6; в таблице 5.7 представлены рецептуры грунтовочных композиций на основе соосажденного манганат (IV) силиката кальция 1:0,1.
Оптимизацию пигментной части грунтовок проводили по схеме, описанной выше. Составы диспергировали до степени перетира 20-30 мкм по прибору «Клин». Покрытия наносили на металлическую подложку (сталь 0,8 КП), подготовленную по методике, описанной в 3 разделе, в три слоя посредством ракеля. Толщина покрытий составляла не более 40 мкм.
Таблица 5.6 – Составы пигментной части, %
№ смеси | Манганат (IV) силикат калиция | Наполнители | Оксид цинка |
1 | 40,00 | 20,00 | 40,00 |
2 | 30,25 | 39,75 | 30,00 |
3 | 40,00 | 60,00 | 0 |
4 | 10,75 | 59,25 | 30,00 |
5 | 1,00 | 99,00 | 0 |
6 | 20,50 | 59,50 | 20,00 |
7 | 1,00 | 59,50 | 40,00 |
8 | 10,75 | 79,25 | 10,00 |
9 | 30,25 | 59,75 | 10,00 |
Таблица 5.7 – Рецептуры грунтовок,%
№ п/п | ПФ-060 | Пигмент | Микротальк | Кальцит | Оксид цинка | Уайт-спирит | Сиккатив |
1 | 37,5314 | 13,1060 | 1,3103 | 5,6419 | 13,1060 | 29,4034 | 2 от массы лака |
2 | 37,1758 | 10,1578 | 2,6696 | 10,6782 | 10,0738 | 29,2448 | |
3 | 40,1360 | 11,3152 | 3,3946 | 13,5782 | 0 | 31,5760 | |
4 | 36,1140 | 3,8138 | 4,2042 | 16,8166 | 10,6434 | 28,410 | |
5 | 41,5700 | 0,2580 | 5,1108 | 20,4432 | 0 | 32,702 | |
6 | 38,0180 | 6,5752 | 3,8168 | 15,2672 | 6,4140 | 29,908 | |
7 | 34,7648 | 0,3788 | 4,4708 | 17,8832 | 15,1548 | 27,3484 | |
8 | 38,4998 | 3,3592 | 4,9530 | 19,812 | 3,1250 | 30,271 | |
9 | 39,4510 | 8,9280 | 3,5270 | 14,0278 | 2,9514 | 31,0348 |
После изготовления грунтовок и формирования покрытий на их основе полученные образцы окрашенной стали были подвергнуты коррозионным испытаниям (500 часов выдержки в 3%-ном водном растворе хлорида натрия).
В качестве функций отклика использовались значения потенциала стали под покрытием, электрической емкости системы окрашенный металл – электролит, адгезии покрытий и площади подпленочной коррозии.
На рисунках 5.4 и 5.5 представлены результаты исследования изменения значения электрической емкости систем окрашенный металл – электролит; на рисунках 5.6 и 5.7 – хронопотенциометрические кривые, полученные в результате исследования окрашенной стали, находящейся в контакте с электролитом.
Значения электрической емкости большинства образцов находятся в пределах значений, характерных для покрытий с высокими барьерными свойствами – до 2,5 нФ, исключение составляют 1, 2 и 9 композиции, значения емкости для которых увеличиваются, что свидетельствует о снижении барьерных свойств этих образцов и возможном развитии коррозионных процессов.
Анализ результатов хронопотенциометрии стали с покрытиями на основе алкидного связующего показывает наличие хороших защитных свойств у составов 1, 3, 4, 5, 6, 8, коррозионный потенциал которых находится в области положительных значений, что свидетельствует о пассивном состоянии металла под покрытием. Хронопотенциометрические кривые остальных образцов лежат в области отрицательных значений потенциала, что характеризует протекание коррозионных процессов на границе металл – покрытие.
Полную характеристику всем составам можно дать только после проведения комплексной оценки металла и покрытия после окончания испытаний, результаты которой приведены в таблице 5.8.
1 – состав 1
2 – состав 2
3 – состав 3
4 – состав 4
Рисунок 5.4 – Изменение значений электрической емкости системы электролит - окрашенный металл
1 – состав 5
2 – состав 6
3 – состав 7
4 – состав 8
5 – состав 9
Рисунок 5.5 – Изменение значений электрической емкости системы электролит – окрашенный металл
1 – состав 1
2 – состав 2
3 – состав 3
4 – состав 4
Рисунок 5.6 - Изменение значений коррозионного потенциала системы электролит – окрашенный металл
1 – состав 5
2 – состав 6
3 – состав 7
4 – состав 8
5 – состав 9
Рисунок 5.7 – Изменение значений коррозионного потенциала системы электролит – окрашенный металл
Таблица 5.8 – Результаты комплексной оценки состояния образцов стали с пигментированными покрытиями, содержащими манганат (IV) силикат кальция
№ состава | С, нФ | Е, мВ | Пузыри,% | Площадь коррозии, % | Адгезия, баллы | |
до опыта | после опыта | |||||
1 | 4,76 | 110 | 3 | 5 | 1 | 1 |
2 | 5,68 | -54 | 7 | 3 | ||
3 | 2,23 | 185 | 0 | 0 | ||
4 | 1,15 | 90 | 0 | 0 | ||
5 | 2,39 | 8 | 10 | 5 | ||
6 | 1,17 | 60 | 0 | 0 | ||
7 | 2,24 | -251 | 20 | 7 | ||
8 | 0,80 | 136 | 0 | 0 | ||
9 | 4,53 | -110 | 10 | 3 |
По данным таблицы можно отметить, что наблюдаемый рост емкости для составов 1, 2, 9 и падение потенциала для составов 2, 7, 9 соответствовали активным коррозионным процессам, что отразилось на площади коррозии.
Таким образом, анализируя совокупность полученных данных, можно сделать вывод, что оптимальными являются составы 3, 4, 6 и 8. Покрытия состава 8 отличаются высокими барьерными, защитными и адгезионными свойствами и даже превосходят штатную Гф – 0119 (таблица 5.9).
Таблица 5.9 – Результаты противокоррозионных испытаний
Грунтовка | Адгезия, балл | Площадь пузырей, % | Площадь коррозии, % | Состояние покрытия, балл (ГОСТ 9.407-84) |
Состав 8 | 1 | 0 | 0 | 1 |
ГФ – 0119 | 2 | 1 | 0,5 | 2 |
Заключение
Исследованы основные свойства манганат (IV) силиката кальция; показано, что по техническим характеристикам он удовлетворяет требованиям, предъявляемым к пигментам лакокрасочных композиций.
Изучены защитные свойства данного пигмента; установлено, что манганат (IV) силикат кальция может быть использован в качестве противокоррозионного пигмента в защитных лакокрасочных покрытиях с целью исключения токсичных его аналогов.
Изучено влияние уровня наполнения полимерных композиций синтезированным пигментом на противокоррозионные свойства покрытий на его основе; найдено оптимальное его содержание в алкидных покрытиях.
На основании проведенных исследований разработаны оптимальные рецептуры органоразбавляемых алкидных грунтовок, содержащих в качестве ингибирующего компонента разработанный пигмент. По большинству параметров, характеризующих защитное действие покрытий, разработанные грунтовки превосходят штатную грунтовку ГФ-0119.
Список использованных источников
1 Розенфельд И.Л. Защита металлов от коррозии лакокрасочными покрытиями / И. Л. Розенфельд, Ф.И. Рубинштейн, К.А. Жигалова. – М.: Химия, 1980. 200с.
2 Овсянников С.В. Антикоррозионные лакокрасочные материалы на основе полиуретанов / С.В. Овсянников, Б.Н. Смирнов // Полиуретановые технологии. – 2005. - №3. - С. 24.
3 RolfKnudsen. Влияние атмосферных условий на процесс окраски. The effect of weather on coating application / Knudsen Rolf // Protect. Coat. Update. - 2003. - №1. - С.8-11.
4 Ермилов П.И. Пигменты и пигментированные лакокрасочные материалы / П.И. Ермилов, Е.А. Индейкин, И.А. Толмачев. – Л.: Химия, 1987. – С.200
5 Розенфельд И.Л. Антикоррозионные грунтовки и ингибированные лакокрасочные покрытия / И. Л. Розенфельд, Ф.И. Рубинштейн. – М.: Химия, 1980. 200с.
6 Библиотечное дело: справочник «Неорганические пигменты» / Л.Ф. Корсунский, Т.В. Калинская, С.Н. Степин. – СПб.: Химия, 1992 – 336с.
7 AbdEl-GhaffarM.A. Возможность использования египетских марганцовых руд в качестве пигментов для лакокрасочных материалов. Пигментныесвойствамарганцовыхруд. Evaluation of the Egyptian manganese ore as a pigment and its applications in surface coatings. Evaluation of the Egyptian manganese ore as a pigment / M.A. Abd El-Ghaffar, A.Z. Gomaa, A.A. Salman, H.E. Nasr, 1991. – C. 177-180.
8 GomaaA.Z. Возможность использования египетских марганцовых руд в качестве пигментов для лакокрасочных материалов. Антикоррозионныегрунтовкисиспользованиемегипетскихмарганцевыхруд. . Evaluation of the Egyptian manganese ore as a pigment and its applications in surface coatings. Anticorrosive primers coating the Egiptian manganese ore // A.Z. Gomaa, M.A. Abd El-Ghaffar, A.A. Salman, H.E. Nasr, 1991. – C. 181-183.
9 Физикохимия силикатов и оксидов. - СПб .: Наука, 1998. - 305с.
10 Дедуров И. Г. Общая технология силикатов : учеб. для техникумов /