Рис. 12.11. Номограмма для определения критериального комплекса Х'
Фильтрующая загрузка является основным рабочим элементом фильтровальных сооружений, поэтому правильный выбор ее параметров имеет первостепенное значение для их нормальной работы. При выборе фильтрующего материала основополагающими являются его стоимость, возможность получения в районе строительства данного фильтровального комплекса и соблюдение определенных технических требований, к числу которых относятся: надлежащий фракционный состав загрузки; определенная степень однородности размеров ее зерен; механическая прочность; химическая стойкость материалов по отношению к фильтруемой воде.Степень однородности размеров зерен, фильтрующей загрузки и ее фракционный состав существенно влияют на работу фильтра. Использование более крупного фильтрующего материала, чем это предусмотрено, влечет за собой снижение качества фильтрата. Использование более мелкого фильтрующего материала вызывает уменьшение фильтроцикла, перерасход промывной воды и удорожание эксплуатационной стоимости очистки воды. Использование фильтрующих материалов с большой степенью неоднородности по величине зерен, превышающей Допустимые пределы, ухудшает условия их промывки, так как вынос верхних мелких фракций начнется раньше, чем придет в Движение основная масса зерен загрузки. Это вызывает необходимость снижения интенсивности промывки, чтобы прекратить вынос мелких фракций. При этом значительная часть фильтрующего слоя будет промыта недостаточно. Кроме ухудшения Условий промывки загрузки, применение весьма неоднородного по крупности фильтрующего материала вызывает ухудшение, условий фильтрования из-за образования поверхностной фильтрующей пленки.
Однородность и крупность фильтрующего материала определяют ситовым анализом путем просеивания навески материала через ряд калиброванных сит. Калибр сита определяется диаметром шара, равновеликого по объему наиболее крупным зернам фильтрующего материала, проходящим еще через данное сито. Для определения зернового состава и однородности из данной партии фильтрующего материала отбирают среднюю пробу в количестве 300 г и высушивают ее до постоянной массы при температуре 105° С. Из этого количества высушенного материала берут навеску 200 г (взвешенную с точностью до 0,01 г) и рассеивают на наборе калиброванных сит.
Таблица 12.1
Калибр сита, мм | Осталось на сите | Прошло через сито | ||
г | % | г | % | |
0,25 | 18 | 9,0 | 1 | 0,05 |
0,41 | 12 | 6,0 | 19 | 9,5 |
0,56 | 71 | 35,5 | 29 | 14,5 |
0,68 | 60 | 30,0 | 129 | 64,5 |
0,80 | 18 | 9,0 | 159 | 79,5 |
0,94 | 11 | 5,5 | 174 | 87,0 |
1,01 | 6 | 3,0 | 187 | 93,5 |
1,48 | 2 | 1,0 | 198 | 99,0 |
По данным табл. 12.1 построен график (рис. 12.12) ситового анализа фильтрующего материала, по которому можно определить основные показатели фильтрующей загрузки: эквивалентный диаметр зерен, который имеет важное значение при расчете фильтрующей загрузки; параметры, определяющие коэффициент неоднородности фильтрующей загрузки, а именно: 10%-ный калибр зерен материала, равный такому калибру сита, через который прошло 10% (по массе) просеиваемого материала, и 80%-ный калибр, равный такому калибру сита, через который прошло при просеивании 80% зерен (по массе).
Рис. 12.12. График гранулометрического состава песка
Эквивалентный диаметр зерен dэ, мм, определяют по формуле
(12.48)где pi— процентное содержание (по массе) фракций со средним диаметром зерен dэ,т. е. количество просеиваемых зерен, %, оставшихся на сите калибр ОМ Uk. Для фильтрующего материала, результаты ситового анализа которого представлены в табл. 12.1, величина составит:
Коэффициент неоднородности фильтрующей загрузки определяют как отношение 80%-го калибра материала к его 10%-му калибру; kH = d80/dll0.Для фильтрующего материала, график ситового анализа которого приведен на рис. 12.12, коэффициент неоднородности составит: kR =0,82/0,42= 1,95.
Важным показателем качества фильтрующего материала является его механическая прочность. При истирании и измельчении материала происходит повышение гидравлического сопротивления верхнего слоя фильтрующей загрузки из-за забивания мелочью и вынос измельченных зерен с промывной водой, т. е безвозвратная потеря фильтрующего материала. Механическую прочность фильтрующих материалов оценивают двумя показателями: истираемостью (т. е. процентом износа материала вследствие трения зерен друг о друга во время промывок — (до 0,5) и измельчаемостью (процентом износа вследствие растрескивания зерен — до 4,0).
Важным требованием, предъявляемым к качеству фильтрующих материалов, является их химическая стойкость по отношению к фильтруемой воде, т. е., чтобы она не обогащалась веществами, вредными для здоровья людей (в питьевых водопроводах) или для технологии того производства, где она используется. Фильтрующий материал считается химически стойким, если он дает прирост растворенного остатка не более 20 мг/л, окисляемости — 10 мг02/л и кремнекислоты — 10 мг/л.
Кроме вышеизложенных технических требований фильтрующие материалы, используемые в хозяйственно-питьевом водоснабжении, проходят санитарно-гигиеническую оценку на микроэлементы, переходящие из материала в воду (бериллий, молибден, мышьяк, алюминий, хром, кобальт, свинец, серебро, марганец, медь, цинк, железо, стронций).
Наиболее распространенным фильтрующим материалом является кварцевый песок — речной или карьерный. Кварцевый песок при небольшом содержании примесей известняка отвечает всем вышеперечисленным требованиям, предъявляемым к фильтрующим материалам. Наряду с песком применяют антрацит, керамзит, горелые породы, шунгизит, вулканические и доменные шлаки, гранодиорит, пенополистирол и др. (табл. 12.2).
Зерна дробленого антрацита имеют меньшую плотность, чем кварцевый песок, и поэтому его обычно используют в качестве верхнего слоя загрузки двухслойных фильтров. Предъявляемым требованиям по механической прочности и химической стойкости удовлетворяет антрацит классов АП — антрацитовая плита, АК — кулак и АС — мытое семечко.
Важнейшими характеристиками фильтрующих материалов являются межзерновая пористость засыпки п, форма зерен и плотность р. Зерна угловатой формы, имеющие шероховатую поверхность, характеризуются повышенным эффектом адсорбции примесей, а большая пористость засыпки обеспечивает меньшее гидравлическое сопротивление фильтрующей загрузки. Плотность зерен фильтрующего материала определяет необходимую интенсивность промывки фильтрующей загрузки, а такжеопределяет технологический режим работы контактных осветлителей. Межзерновую пористость засыпки определяют по формуле n=[m/(pv)]— 1, где т — масса отмытого и отсортированного материала, имеющего объем V. Форма зерен загрузки оценивается коэффициентом формы а, представляющим собой отношение поверхности зерна к поверхности равновеликого по объему шара. Коэффициент формы зерен реальных загрузок всегда больше единицы.
Таблица 12.2
Керамзит представляет собой гранулированный пористый материал, получаемый обжигом глинистого сырья в специальных печах. Необходимые для загрузки водоочистных фильтров фракции керамзита могут быть получены либо отсевом из общей массы неоднородного керамзита, либо дроблением крупных гранул с последующим отсевом нужных фракций. Зерна дробленого керамзита имеют более развитую поверхность и соответственно лучшие технологические свойства по сравнению с окатанными зернами недробленого керамзита.
Горелые породы представляют собой метаморфизированные угленосные породы, подвергнутые обжигу при подземных пожарах. Необходимые фракции этого материала получают его дроблением с последующей сортировкой.
Вулканические шлаки—материалы, образовавшиеся в результате скопления газов в жидкой остывающей лаве. В Закавказье вулканические шлаки залегают как в виде сыпучих материалов, так и в виде смеси щебня и песка. При этом свойства вулканических шлаков разных месторождений весьма различны.
Шунгизит получают путем обжига природного малоугленосного материала, — шунгита, который по своим свойствам близок к дробленому керамзиту.
В качестве фильтрующих материалов могут быть использованы также отходы промышленных производств, доменные шлаки и шлаки медно-никелевого производства. Достоинством шлаков является то, что они обычно имеют фракционный состав, близкий к тому, который требуется для загрузки фильтровальных аппаратов.
В качестве фильтрующего материала на фильтрах с плавающей загрузкой используют пенополистирол. Этот зернистый материал получают вспучиванием в результате тепловой обработки исходного материала — полистирольного бисера, выпускаемого химической промышленностью. При вспенивании получают плавающие в воде зерна, имеющие плотность от 100 до 200 кг/м3.
Указанные фильтрующие материалы не охватывают всего многообразия местных фильтрующих материалов, предложенных в последние годы. Имеются данные о применении аглопорита, фарфоровой крошки, гранодиорита, габбродиабаза, граната и т. д.
Находят применение активные фильтрующие материалы, которые благодаря своим свойствам могут извлекать из воды не только взвешенные и коллоидные примеси, но и истинно растворенные загрязнения. Так, для стабилизационной обработки воды применяют мраморную крошку и магномассу. Все более широко применяют активные угли для извлечения из воды веществ, обусловливающих привкусы и запахи. Применяют природный ионообменный материал клиноптилолит для удаления из воды растворенных соединений фтора и азота. Однако, доступность и дешевизна этого материала позволяют все более широко применять его в качестве загрузки фильтровальных аппаратов.