Смекни!
smekni.com

Производство ацетилена (стр. 2 из 3)

Давление в смесителе 37—40 мм рт. ст.

Температура в центре печи 16 1100°С

Давление в печи 15 мм рт. ст.

Цикл работы печи 2 минуты: 1 мин. нагрев,

1 минута — крекинг

Система проектируетсяи работает минимум

с двумя печами

Давление после вакуум-насоса 420 ммвод. ст.

Температура после теплообменника50°С

Давление после компрессора 10,5 атм.

Состав газов крекинга пропана после печи 16

С2Н2-10,0; СН4-15,0; Н2-55,7; N25,2; СО-6,9; С2Н4—3,8;

С02—1,6, прочие—1,8 объемных процента.


Схема № 2. Технологическая схема производства ацетилена термическим крекингом

Обозначения на схеме №2:

1—испаритель,

2—водяной скруббер,

3—охладитель,

4—смолоотделитель,

5—холодильник газов,

6—вторичный холодильник,

7—башенный смолоотделитель,

8—электрофильтр,

9—смолоотделитель,

10—напорный бак,

11—водяной скруббер,

12 —водяной скруббер,

13—осушитель ацетилена,

14—стабилизатор растворит.,

15—кипятильник,

16—реакционная печь,

17—холодильник дымов, газов,

18—сборник смолы,

19—сборник воды,

20—холодильник после компресс,

21—абсорбер диацетилена,

22—абсорбер ацетилена,

23—десорбер ацетилена,

24—кипятильник,

25—смеситель. .

3.Производство ацетилена термоокислительным пиролизом метана

Сущность термоокислительного пиролиза метана заключается в том, что тепло, необходимое для реакции превращения метана в ацетилен, получается за счет окисления (сжигания) части метана.

Основными реакциями термоокислительного пиролиза метана являются:

СН4+0,5О2СО+2Н2+6,1ккал/г-моль,

2СН4 ↔ С2Н2+ЗН2—91,1ккал/г-моль

Быстрый вывод реакционной смеси из зоны реакции и резкое понижение температуры — закалка — способствует прекращению распада ацетилена, повышая его выход. Существенным является соотношение между количествами метана и кислорода.

Процесс получения ацетилена возможно осуществить в многоканальном реакторе (способ Заксе), состоящим из смесителя, диффузора и горел очной плиты с большим числом каналов. Скорость движения исходных компонентов 15—50 м/сек. Этот способ получил пока наибольшее распространение.

Одноканальные реакторы Гриненко имеют реакционную зону — капал—относительно малого диаметра. Скорость движения газов в зоне реакции равняется, 330—550 м/сек. Стабилизация пламени осуществляется путем подачи дополнительного кислорода через топочную камеру.

Концентрация ацетилена в газах пиролиза составляет 8—10%, поэтому для дальнейшей переработки его необходимо выделить из этих газов (см- схему № 3).

По описываемой схеме производство ацетилена осуществляется в многоканальном реакторе, выделение ацетилена производится адсорбцией селективным растворителем—диметилформамидом. Сырьем является природный газ, содержащий 92—95% метана и 95—99% кислорода.

Кислород и природный газ очищаются в фильтрах 15 и 16 от окислов железа и других примесей, могущих вызвать воспламенение смеси до реакционной зоны, и поступают в подогреватели, вмонтированные в общую печь 13. Подогрев газов, идущих на реакцию, производится теплом, полученным от сжигания топливного газа. Во избежание перегрева природного газа и кислорода в топку подогревателей вводятся циркуляционные дымовые газы, часть которых сбрасывается для использования под котлами-утилизаторами. Циркуляция дымовых газов осуществляется газодувками, выдерживающими высокую температуру. Нагретые кислород и природный газ поступают в реактор 17. В его смесителе газы смешиваются, проходят диффузор, затем горелочную плиту, по каналам которой смесь газов направляется в реакционную зону. В зоне реакции происходит образование ацетилена и протекают побочные реакции, приведенные выше. Продукты реакции проходят через зону закалки, резко охлаждаясь водой, подаваемой форсунками под горелочную плиту.

Вода из реактора, загрязненная смолой и сажей, поступает в отстойник 20, из которого центробежным насосом возвращается в реактор. Часть йоды откачивается на очистку. Охлажденный газ пиролиза из реактора уходит в скруббер 14 для очистки от сажи и смолы водой. Окончательная очистка от этих примесей производится в электрофильтре 1, смонтированном на скруббере.

Поступающий на разделение газ пиролиза нагнетается турбокомпрессором в абсорбер ацетилена 2, орошаемый диметилформамидом и конденсатом из сборника 21 и холодильника 22.

Диметилформамид из абсорбера 2 дросселируется в десорбер3, работающий при атмосферном давлении, сверху десорбера отбираются возвратные газы. Растворенный в диметилформамиде ацетилен выделяется и промывается в промывателе 4 и направляется в газгольдер потребителя. Диметилформамид, вытекающий из десорбера 5, с некоторым содержанием ацетилена центробежным насосом через теплообменник 25 подается в десорбер второй ступени 5, работающий под вакуумом. Вытекающий из него диметилформамид, не содержащий газов, через теплообменник 25 и холодильник 24 возвращается в сборник 21, из которого подается на орошение абсорбера 2. Высшие ацетилены из десорбера второй ступени 5 поступают в промыватель 12, орошаемый конденсатом из сборники 23. Промывные воды из промывателя стекают в десорбер5. Пары высших ацетиленов через барометрический конденсатор 7 и лопушку 8 вакуум-насосом подаются в отделение пиролиза. Вода из барометрического конденсатора сбрасывается через барометрический стакан 18. Сверху из десорбера5 ацетилен возвращается в десорбер3.

Диметилформамид, вытекающий из десорбера второй ступени 5, после теплообменника 25 частично откачивается в сборник 26, из которого поступает на дистилляцию. Затем он подогревается в подогревателеІ0и направляется в колонну 28. Отгоняющиеся инерты и пары воды через конденсатор 9 уходят из системы. Сконденсировавшийся диметилформамид стекает обратно в колонну. Из нижней части колонны, обогреваемой кипятильником 12, вытекает очищенный диметилформамид, который после охлаждения в холодильнике 27 перекачивается в сборник 21.

Основные параметры производства

Температура природного газа и кислорода

перед входом в реактор 500—600°С

Соотношение между метаном и кислородом

перед реактором (по объему) 1,6 - 2,0:1

Давление газовой смеси перед реактором не более 0,4 атм.

Температура реакционной зоны 1400 - 1500°С

Состав газа после закалки в пересчете на сухой (в объемн. %):


С2Н28-9; С02—3-4; СО—24-26; Н2-54—56:

СН4—4-6; О2-0—0,4; прочих-1-7.

Температура газа на выходе из реактора около 80°С

Время пребывания смеси галоп в зоне реакции 0,003 — 0,01 сек.

Скорость газового потока в реакционном

канале печи 15—50 м/сек

Давление и абсорбере 2 около 10 атм.

Расход на 1 т 100%ацетилена

метана (на синтез) 6000 нм3

кислорода (100%-ного) 3280— 3430 нм3

На 1 г ацетилена получается синтез-газа до 11000 нм3




Обозначения на схеме № 3:

1 -электрофильтр,

2-абсорбер ацетилена,

З -десорберI ступени,

4 -промыватель ацетилена,

5-десорберII ступени,

6, 9 – конденсаторы,

7 – барометрический конденсатор,

8- ловушка,

10-паровой подогреватель,

11 —сепаратор,

12 — промыватель высших ацетиленов,

13—печь, с трубчатыми подогревателями,

14 -скруббер,

15,16 - фильтры,

17- реактор,

18 - барометрический стакан,

19 –кипятильник,

20 - отстойник,

21, 23, 26 -сборники,

22, 24, 27 - холодильники,

25 - теплообменник,

26 - дистилляционная колонна.

4. Извлечение ацетилена из реакционных газов

ацетилен электрокрекинг метан пропан

При получении ацетилена из углеводородного сырья образуются сложные газовые смеси, содержащие 5—10% С2Н2 (по объему).

Предложенные в настоящее время способы выделения ацетилена (1) можно разделить в основном на четыре группы:

1) абсорбция водой (при давлении 18—20 атм.);

2) абсорбция селективными растворителями;

3) низкотемпературная абсорбция метанолом, аммиаком и ацетоном;

4) адсорбция ацетилена активированным углем в движущемся слое—гиперсорбция.

Абсорбция водой. На первой стадии реакционный газ промывается маслом для отделения бензола, нафталина, части диацетилена и др. Затем реакционная смесь компримируется до 18—20 атм. и поступает на абсорбцию водой. Вместе с ацетиленом водой абсорбируется и углекислый газ. Десорбция ацетилена ведется четырехступенчатым дросселированием до первоначального давления. Затем ацетилен очищается от примесей (С02, SО2). Очищенный ацетилен содержит 98—99% С2Н2.

Схема этого метода сложна, очистка недостаточна, расход электроэнергии значителен-

Абсорбция селективными растворителями. Из растворителей ацетилена для промышленного применения пригодны диметилформамид, бутнролактон, N —метилиирролидан, диметилсульфоксид и некоторые другие. Технологические схемы извлечения ацетилена из реакционных газов термического крекинга (см. схему № 2) и термоокислительного пиролиза (см. схему № 3) диметилформамидом наиболее разработаны и находят практическое применение, несмотря на их сложность и недостаточную очистку от С02.

Низкотемпературная абсорбция метанолом, аммиаком или ацетоном. Реакционный газ предварительной промывкой щелочью освобождают от сажи и углекислого газа, сушат, промывают метанолом и абсорбируют ацетилен аммиаком при атмосферном давлении и температуре —70°С. Аммиак, содержащий растворенный ацетилен, подвергают разгонке для отделения его от ацетилена. Способ имеет то преимущество, что не требуется компримирования ацетиленовой смеси. Растворитель аммиак доступен и дешев.