Смекни!
smekni.com

Синтез и исследование поливольфрамофенилсилоксанов, содержащих атомы вольфрама в степени окисления +6 (стр. 2 из 5)

3. Взаимодействие органилсиланолятов щелочных металлов с хлоридами металлов

Наиболее удобным в препаративном отношении и универсальным методом синтеза ПМОС является метод, основанный на взаимодействии хлоридов металлов с органилсиланолятами щелочных металлов [24-27]. Данный способ практически незаменим для получения ПМОС циклолинейного строения.

Данный метод образования полимеров отражен следующими схемами:

RSi(OH)2ONa+MYx→M[O(OH)2SiR]x+xNaY (7)

M[O(OH)2SiR]x→{[RSi(O)1.5MOx/2}+xH2O (8)

Методика получения ПМОС состоит из двух стадий: сначала при действии дозированного количества щелочи на органосилоксан получают органосиланолят, далее с помощью обменной реакции органосиланолята и галогенида поливалентного металла формируют металлосилоксановый фрагмент Si-O-M-O-Si, при этом металл "встраивается" в силоксановую цепь. Несмотря на кажующуюся простоту данных схем, соотношение кремния к металлу в получаемых полигетеросилоксанах часто отличается от исходного, они неоднородны по составу, что указывает на сложность процессов полимерообразования. Предложены методы синтеза в водно-органических средах: в этом случае соотношение кремния к металлу в полимерах зачастую сильно завышены относительно исходного и они неоднородны по составу [25,28].

По мнению ряда других авторов при проведении процесса в водно-органических средах преобладающее влияние оказывает гидролиз исходных соединений: реакция по своему характеру мало чем отличается от согидролиза [29].

Методом, основанным на взаимодействии хлоридов металлов с мононатровыми солями органилсилантриолов в безводной среде удается достигнуть значительно лучших результатов. При проведении процесса в среде инертного растворителя, выход полимера значительно улучшается в присутствии бутилового спирта, вероятно вследствие гомогенизации системы [29]. Но данный способ является технологически более трудоемким из-за трудностей получения безводных хлоридов металлов. Однако и в этом случае в реакционной системе будет содержаться некоторое количество воды [30].

Для исключения влияния побочных процессов был предложен новый метод получения ПМОС в среде диметилсульфоксида (ДМСО), который эффективнее чем вода сольватирует ионы металлов [31]. Насыщая координационную сферу металла, ДМСО препятствует протеканию нежелательных побочных процессов, что приводит к получению ПМОС более регулярного строения. Предложенный метод не требует использования в синтезе ПМОС безводных галогенидов металлов и абсолютных растворителей. В полученных полимерах сохраняются соотношения кремния к металлу и они практически однородны по составу.

Метод получения каркасных и полимерных металлоорганосилоксанов, в котором использовали для синтеза полиметаллоорганосилоксанов не силаноляты натрия, полученные щелочным расщеплением предварительно синтезированных полиорганосилоксанов, а мономерные органотриалкоксисиланы предложен авторами [32]. Суть метода заключается в том, что органотриалкоксисилан обрабатывают водно-метанольным раствором едкого натра, причем количество воды должно обеспечивать полный гидролиз алкоксигрупп.

4. Расщепление силоксановой связи оксидами металлов

Одним из путей формирования гетеросилоксановой связи является взаимодействие оксидов элементов с полиорганилсилоксанами по схеме:

Реакции расщепления силоксановой связи под действием некоторых оксидов металлов подробно изучены авторами [8-9]. В качестве полимерных кремнийорганических производных наиболее часто использовались полидиметилсилоксан (ПДМС) и циклический октаметилциклотетрасилоксан (D4).

При расщеплении органосилоксанов кислотами Льюиса [8-9,33] наблюдается перенос галоида металла к атому кремния одновременно сопровождается формированием связи Si-O-M. При взаимодействии органохлорсиланов с оксидом поливалентного металла возможен обратный процесс – перенос атома галогена от кремния к металлу с образованием галоидметаллоорганосилоксанов. Образующийся галоидметаллоорганосилоксан претерпевает межмолекулярную перегруппировку. Ступенчатое протекание перегруппировки приводит к увеличению длины силоксановой цепи через образование циклических и паркетообразных структур.

Позднее было показано, что одним из перспективных методов модифицирования цепи этих полимеров является реакция расщепления связи Si-O-M под действием неорганических и органических производных пятивалентного фосфора [34].

Также исследовались реакции расщепления связи Si-O-Si в силоксанах под действием органических окисей и гидроокисей металлов, при этом получали полимеры, выходы которых были количественные, и были однородными по составу [35].

5. Метод механохимического синтеза

Все большее значение в качестве одного из перспективных методов получения новых соединений приобретает метод механохимического (твердофазного) синтеза. [36-41]

Преимущество механохимического метода синтеза заключается в его экологической частоте, а также в том, что в ряде случаев возможность упрощения технологической схемы процесса. Механообработка реагентов позволяет добиться смешения компонентов реакционной смеси практически на атомарном уровне и исключить использование в подавляющем большинстве случаев органических растворителей в синтезах химических соединений. Это позволяет избежать влияния органических растворителей на состав полученных полимеров и избавиться от проблемы утилизации растворителей, и создать более эффективные в экологическом отношении способы производства элементорганических полимеров и мономеров.

1.2 Некоторые свойства полиметаллоорганосилоксанов

Химические и физические свойства гетеросилоксанов черезвычайно разнообразны. Они зависят как от природы атома металла (его атомного радиуса, электроотрицательности, наличия и характера вакантных орбиталей, неподеленных электронных пар и свободных валентных электронов), так и от окружения атомов кремния и металла, составляющих гетеросилоксановую группировку. Эти факторы определяют распределение электронной плотности (полярность и порядок связей Si-O и O-M) в гетеросилоксановой группировке, а так же ее склонность к координации с нуклеофильными и электрофильными реагентами и к самоассоциации.

Большое влияние на свойства полимеров оказывает структура главных цепей молекул. Введение атомов металла в полимерную цепь может привести, к нарушению циклолинейной структуры силоксановой цепи. Поэтому значительное число работ посвящено изучению строения фрагментов, образование которых сопровождается введением того или иного металла.[1,42-43]

Андрианов предложил следующую структуру основных цепей молекул:


Полимеры состава [(RSiO1.5)mMOm/2] имеют незавершенную циклолинейную структуру и в зависимости от метода получения и условий синтеза способны переходить в нерастворимое состояние [8].

Так как полимеры содержат в своем составе 4-5% гидроксильных групп, то для них была предложена циклоразветвленная структура [12]

Такая структура хорошо объясняет свойства частиц по форме близкой к сферической, но степень завершенности реакции в исследуемых полимерах выше, чем следует из приведенной выше формулы.

Строение поллиметаллофенилсилоксанов зависит от состава и структуры исходного фенилсиликоната натрия [10].

Более высокая полярность связи O-M в группировках Si-O-M по сравнению с группой Si-O-Si в изоструктурных силоксанах обуславливает повышенную склонность гетеросилоксанов к гетеролитическим (ионным) реакциям, в частности, гидролизу. Когда электроотрицательность кремния и металла резко отличаются, гетеросилоксановая группировка Si-O-Mn гидролитически неустойчива. При действии воды она может либо обратимо диссоциировать на ионы Si-O- и M+ (при n=1 и M – щелочной металл), либо обратимо или необратимо гидролизоваться с первичным образованием фрагментов SiOHHOMn . По мнению авторов [44] механизм гидролиза связи M-O-Si заключается в образовании координационного переходного комплекса между молекулой воды и молекулой гидролизуемого вещества с последующим распадом по схемам:


Важным свойством ПМОС является устойчивость к процессу термоокисления, которая зависит от многих факторов, а именно, от природы органических радикалов, связанных с кремнием, структуры макромолекул и типа металла [45-47]. При изучении устойчивости полимеров типа [(RSiO1.5)nMOn/2]x к действию 10%-ного раствора соляной кислоты было показано, что устойчивость в зависимости от природы металла и радикала у атома кремния уменьшается в ряду:

Ti> AL> SnC6H5> C2H5

Систематическое исследование гидролитической устойчивости полиметаллоорганосилоксанов показало, что устойчивость полимеров возрастает при переходе от линейных структур к циклоразветвленным и сетчатым.

Характер влияния металла зависит от его электронного строения: к р- или d- типу он относится. С увеличением содержания в полимерах p-металлов термоокислительная деструкция ПМФС возрастает, снижаются температуры максимального развития процесса и значения кажущейся энергии активации. У полимеров, содержащих d-металлы, распад характеризуется более высокими значениями указанных величин, причем, наиболее устойчивы соединения с большим содержанием d-металла. В присутствии в цепи типичного комплексообразователя d-метала и с увеличением его содержания возрастает эффект межцепных взаимодействий, приводящих к образованию термически устойчивых надмолекулярных структур. В случае полимеров, содержащих в цепи р-металл, процесс термоокисления определяется основностью металла. Увеличение основности металла приводит к увеличению доли ионности связи во фрагментах Si-O-M, возрастают межцепные взаимодействия электростатической природы, что так же приводит к образованию устойчивых к термоокислению структур [48].