Смекни!
smekni.com

Комплексные соединения в аналитической химии (стр. 2 из 6)

2.1Тип гибридизации атомных орбиталей комплексообразователя и структура внутренней сферы комплексного соединения

Для комплексных соединений, содержащих во внутренней сфере различные лиганды, характерна геометрическая изомерия, наблюдаемая в тех случаях, когда при одинаковом составе внутренней сферы лиганды в ней располагаются по-разному относительно друг друга. Если два одинаковых лиганда расположены рядом, то такое соединение называется цис-изомером, если эти лиганды расположены по разные стороны от комплексообразователя, то это трансизомер. Например, комплекс [Pt(NН3)2Сl2]. Геометрические изомеры комплексных соединений различаются не только по физическим и химическим свойствам, но и по биологической активности. Так, цис-изомер комплекса [Pt(NН3)2Сl2] проявляет ярко выраженную противоопухолевую активность, а трансизомер - нет. Следовательно, не только состав, но и геометрия внутренней. Эффективность донорно-акцепторного взаимодействия лиганда и комплексообразователя, а следовательно, и прочность связи между ними определяются их поляризуемостью, т. е. способностью трансформировать свои электронные оболочки под внешним воздействием. По этому признаку реагенты подразделяются на "жесткие", или малополяризуемые, и "мягкие" - легкополяризуемые. Поляризуемость атома, молекулы или иона прежде всего зависит от размера молекулы и числа электронных слоев. Чем меньше радиус и число электронов у частицы, тем менее она поляризуема. Частицы с большим радиусом и большим числом электронов, наоборот, легко поляризуются. По этим признакам можно расположить в ряд комплексообразователи и лиганды, участвующие в процессах метаболизма:

Комплексообразователи:

Увеличение мягкости комплексообразователя:

-------------------

Na+, K+, Mg2+, Ca2+, Mn2+, Fe2+, Со2+, Ni2+, Сu2+, Zn2+, Сd2+,Pb2+, Hg2+.

Увеличение мягкости лиганда:

-------------

F-, ОН-, Н2О, Сl-, Вr-, I-, RСОO-, NR3, RSН, СN-

В соответствии с общим принципом "подобное в подобном" и спецификой донорно-акцепторного взаимодействия наиболее прочная и устойчивая к диссоциации ковалентная связь возникает между мягкими комплексообразователями и мягкими лигандами. С учетом того что белки, включая ферменты, содержат мягкие легкополяризуемые группы —СОO-, —NН2 и —SН, становится понятным, почему все "металлы жизни", относящиеся к (d-элементам, в организме встречаются практически только в виде комплексов с биосубстратами. С другой стороны, ясно, почему катионы тяжелых металлов Сd2+, Рb2+, Нg2+ сильно токсичны. Эти катионы очень "мягкие", особенно катион Нg2+, и поэтому они активно образуют прочные комплексы с жизненно важными белоксодержащими субстратами, нарушая их метаболизм. Особенно легко в реакцию комплексообразования вступают белки, содержащие группу —SН:

2RSН + 2Нg2+- [R—S—Не—S—R] + 2Н+

Склонностью к комплексообразованию объясняется также токсичность цианидов, так как анион СN- -- очень мягкий лиганд -- активно взаимодействует с катионами d-металлов в комплексах, замещая в них биосубстраты и тем самым инактивируя эти биокомплексы. Катионы Na+ и К+ вследствие своей жесткости практически не образуют устойчивых комплексов с биосубстратами и в физиологических средах находятся в основном в виде гидратированных ионов. Катионы Мg2+ и Са2+ способны образовывать достаточно устойчивые комплексы с белками, и поэтому в физиологических средах они встречаются как в ионизованном, так и в связанном состоянии (в виде комплексов с белками, а также нерастворимых солей — фосфатов, оксалатов и уратов). Таким образом, прочность и устойчивость к диссоциации ковалентной связи между комплексообразователем и лигандами зависит от их природы, и прежде всего от способности вызывать и проявлять поляризуемость.

3. Химические свойства комплексных соединений

3.1 Диссоциация в растворах

В растворах комплексные соединения могут подвергаться первичной и вторичной диссоциации.

Первичная диссоциация комплексного соединения — это распад комплексного соединения в растворе на комплексный ион внутренней сферы и ионы внешней сферы.

В водных растворах первичная диссоциация комплексных соединений связана с разрывом в них ионной связи, и поэтому она практически необратима и ее уравнение следует записывать так:

[Ag(NН3)2]Сl - [Ag(NН3)2]+ + Сl-

К4[Fе(СN)6] - 4К+ + [Fе(СN)]4-

Возникающий в результате первичной диссоциации подвижный комплексный ион ведет себя в растворе как целая самостоятельная частица с характерными для нее свойствами. Поэтому в водных растворах комплексных соединений, как правило, нельзя обнаружить присутствие ионов или молекул, входящих в состав внутренней сферы. Так, в водных растворах [Аg(NН3)2]Сl не удается обнаружить присутствие катионов Аg+ и молекул NН3, в растворах К4[Fе(СN)6] - катионов Fе2+ и анионов СN-,

Вторичная диссоциация комплексного соединения -это распад внутренней сферы комплекса на составляющие ее компоненты.

Вторичная диссоциация связана с разрывом ковалентной связи, поэтому она сильно затруднена и имеет ярко выраженный равновесный характер подобно диссоциации слабых электролитов. Отрыв лигандов из внутренней сферы комплексного иона происходит ступенчато:

1-я ступень: [Ag(NН3)2]+-- [Ag(NН3)]+ + NH3

2-я ступень: [Ag(NН3)]+-- Ag+ + NH3

Вторичная диссоциация, как всякий равновесный процесс, характеризуется константой равновесия, причем каждая стадия имеет свою константу. Для количественной характеристики устойчивости внутренней сферы комплексного соединения используют константу равновесия, описывающую полную ее диссоциацию, называемую константой нестойкости комплекса Kнест. Для комплексного иона [Аg(NН3)2]+ выражение константы нестойкости имеет вид: Чем меньше Кнест, тем стабильнее внутренняя сфера комплекса, т. е. тем меньше она диссоциирует в водном растворе. Значения Кнест комплексных соединений, приведенные в табл. 2, свидетельствуют о том, что в результате процесса комплексообразования происходит очень прочное связывание ионов в водных распорах, особенно ионов комплексообразователей. Следовательно, для связывания ионов из раствора можно чрезвычайно эффективно использовать реакцию комплексообразования. Особенно эффективное связывание ионов комплексообразователя происходит при реакции с полидентатными ("многозубыми") лигандами. Эти лиганды благодаря наличию в них двух и более электронодонорных центров способны образовывать несколько связей с ионами металлов, формируя устойчивую циклическую структуру. Образно говоря, ион металла захватывается полидентатным лигандом подобно жертве, попавшей в клешни рака. В связи с этим такие комплексные соединения получили названия хелатов.

Таблица 2 Константы нестойкости комплексных ионов

Комплексный ион Кнест
[NH4]+/NH3+H+ 5,4*10-10
[Ag(NН3)2]+/Ag++2NH3 9,3*10-8
[Cu(NH3)4]2+/Cu2++4NH3 2,1*10-13
[Zn(OH)4]2-/Zn2++4OH- 3,6*10-16
[Fe(CN)6]3-/Fe3++6CN- 1*10-31
[Fe(CN)6]4-/Fe2++6CN- 1*10-36

Хелаты -- устойчивые комплексы металлов с полидентатными лигандами, в которых центральный атом является компонентом циклической структуры.

Одними из наиболее эффективных хелатообразующих лигандов являются этилендиаминтетрауксусная кислота (ЕDТА) или ее динатриевая соль, называемая трилон Б:

НООССН2 СН2СООН

N—СН2—СН2—N

НООССН2 СН2СООН

ЕDТА

НООССН2 СН2СООН

N—СН2—СН2—N

НООССН2 СН2СОOH

трилон Б (Nа2Н2Т)

ЕDТА образует устойчивые комплексы практически с катионами всех металлов, за исключением щелочных, поэтому ЕDТА широко используется в аналитической практике для определения содержания ионов различных металлов, а в медицине - в качестве детоксиканта для выведения из организма ионов тяжелых металлов в виде растворимых комплексов.

Среди природных лигандов следует выделить макроциклические полидентатные лиганды, внутри которых размещается комплексообразователь. Макроциклическими лигандами являются порфирины, близкие им по структуре коррины, а также белки. В этом случае лиганд называется "хозяин", а комплексообразователь – "гость". В таких комплексах комплексообразователь изолирован от окружающей среды и может удерживаться прочно, например в гемоглобине, цитохромах, витамине В12, хлорофилле, или слабо, например в ионофорах, используемых для транспорта катионов металлов через мембраны.