В ахиральной среде два энантиомера имеют одинаковые химические и физические свойства, но их легко отличить друг от друга по специфическому взаимодействию со светом. Один из энантиомеров вращает плоскость поляризации линейнополяризованного (плоскополяризованного) света вправо, а другой энантиомер - на точно такой же угол влево.
Феноменологическую модель оптической активности предложил Френель еще в 1823 г. Она основана на волновой теории света и с позиций современной науки не является достаточно строгой. Тем не менее, эта модель дает очень наглядное представление о причинах оптической активности и других явлениях, связанных с поглощением света хиральным веществом, в рамках классической электродинамики, поэтому ее часто используют и в настоящее время.
Согласно классическим представлениям, линейнополяризованный (плоскополяризованный) свет характеризуется тем, что векторы составляющих его зависимых от времени электрического (Е) и магнитного (Н) полей осциллируют во взаимно перпендикулярных плоскостях и их изменения носят синусоидальный характер во времени и в пространстве. Плоскополяризованный свет можно рассматривать как комбинацию левого и правого циркулярнополяризованных лучей, движущихся в фазе по отношению друг к другу. Если в начальной точке времени 1 электрические векторы левого и правого циркулярнополяризованных лучей ориентированы вверх, то в точке 2 вектор правого луча ориентирован вправо, а вектор левого луча влево (если смотреть в направлении движения света по оси z). В точке 3 векторы обоих лучей ориентированы вниз, в точке 4 вектор правого луча ориентирован влево, а вектор левого луча вправо, и т.д. Таким образом, правый и левый циркулярнополяризованные лучи обладают соответственно правой и левой спиральностью вращения вектора электрического поля. Сумма этих лучей дает плоскополяризованный луч, в пространственно-временных точках 1,3 и 5 векторы суммируются, а в точках 2 и 4 взаимно уничтожаются. Расстояние между точками 1 и 5 соответствует одному витку правой или левой спирали или длине плоской волны.
При попадании света на любую молекулу в прозрачной среде, скорость его замедляется (уменьшение скорости пропорционально показателю преломления среды), так как свет взаимодействует с электронными оболочками молекул. Степень такого взаимодействия зависит от поляризуемости молекулы.
Плоско (линейно) поляризованный световой луч (а), правый (б) и левый (в) циркулярно-поляризованные лучи, (г) - результат взаимодействия электрических векторов лучей (б) и (в), находящихся в фазе.
Если среда ахиральна, две циркулярнополяризованные составляющие проходят с одинаковой скоростью (т.е. с одинаковыми показателями преломления для правого и левого лучей). Однако хиральные молекулы проявляют анизотропию поляризуемости, которая зависит от того, левую или правую спиральность имеет циркулярнополяризованный луч. При прохождении через хиральную среду в общем случае неодинаковы не только скорости, но и коэффициенты поглощения левого и правого циркулярнополяризованных компонент плоскополяризованного света. В результате векторы для правого и левого прошедшего через образец лучей будут иметь разную амплитуду, а результирующий вектор будет описывать эллиптическую траекторию. В общем, при прохождении плоскополяризованного света через хиральную среду вектор электрического поля начинает описывать эллипс (эллиптическая поляризация) с повернутой главной осью.
Угол вращения уменьшается с увеличением длины волны падающего света. Однако это справедливо лишь для света, длина волны которого больше длины волны максимума поглощения в электронном спектре данного вещества. Изменение оптического вращения при изменении длины волны называется дисперсией оптического вращения (ДОВ). Разность поглощения правой и левой компонент называется круговым дихроизмом (КД). Количественной характеристикой КД служит угол эллиптичности y, величина которого обратно пропорциональна длине волны
КД открыт Э. Коттоном в 1911 г. и его часто называют эффектом Коттона. ДОВ и КД вместе называются хирооптическими явлениями; в своей основе они связаны с электронными переходами в хиральном окружении. Эффект Коттона, т.е. превращение плоскополяризованного света в эллиптически поляризованный заметно проявляется главным образом вблизи полос собственного (резонансного) поглощения вещества.
(а) - Взаимодействие сдвинутых по фазе компонентов равной амплитуды, (б) - взаимодействие находящихся в фазе компонентов разной амплитуды, (в) - суммарный результат сдвига по фазе.
Квантовую теорию оптической активности построил в 1928 г. бельгийский физик Л. Розенфельд. С позиций современной науки эта теория рассматривается как более строгая. Для объяснения оптической активности оказалось необходимым учитывать взаимодействие электрических и магнитных дипольных моментов, наведенных в молекуле полем проходящей световой волны.
В настоящее время возрождается интерес к корпускулярной теории света, которой придерживался еще Ньютон. Частицей света является фотон - реальная элементарная частица. В фотонной теории поляризацию света связывают с поляризацией фотонов, которая обусловлена наличием у этих частиц спина и его определенной направленностью в пространстве. Спиновые квантовые числа - это как бы дополнительные внутренние степени свободы частицы. В отличие от электронов, имеющих спин J = 1/2, спин фотона J = 1. (Это означает, что электроны принадлежат к классу фермионов, для которых справедлив запрет Паули, а фотоны - к классу бозонов, для которых не действует принцип запрета). Согласно квантовой механике, частица со спином J и ненулевой массой покоя имеет (2J + 1) внутренних квантовых состояний, определяющих ее поляризацию, т.е. степень асимметрии частицы в пространстве. Но масса покоя фотона равна нулю, и поэтому число спиновых состояний на единицу меньше, т.е. равно двум (+1 и - 1). Это означает, что возможны лишь две ориентации проекции спина фотона на направление его движения: параллельная и антипараллельная. В таком случае возникает понятие "спиральность частицы". Если проекция спина на направление движения положительна, то говорят, что частица имеет правовинтовую (правую) спиральность, а если отрицательна - левовинтовую (левую) спиральность. Спиральные объекты хиральны, поэтому фотоны являются как бы хиральными частицами.
Поскольку фотоны обладают целочисленным спином, в одном и том же состоянии может находится любое число фотонов. Это обусловливает возможность описания электромагнитных взаимодействий с участием большого числа фотонов в рамках классической (а не только квантовой) механики. Циркулярно-поляризованный свет можно рассматривать как поток фотонов, имеющих только правую или только левую спиральность. Плоскополяризованный свет состоит из одинакового количества "левых" и "правых" фотонов. Взаимодействие по-разному поляризованных фотонов с хиральной анизотропной средой происходит неодинаково, что приводит к хироптическим эффектам.