Смекни!
smekni.com

Характеристика абсорбционных методов очистки отходящих газов от примесей кислого характера (стр. 3 из 7)

Из раствора сероводород удаляют кипячением при 107 – 1150С. Коррозии кипятильников при этом не наблюдается. Растворы стабильны, не образуют продуктов, ухудшающих их качество. Достоинством процесса является также селективность раствора к сероводороду в присутствии

.

2.2.3 Процесс «Stretford»

В этом процессе сероводород абсорбируют раствором (рН=8,5 – 9,5), содержащим кроме карбоната натрия эквимолекулярное количество ванадата натрия – аммония и антрахинон-2,6-2,7-дисульфоната (АДА). Кроме того к раствору добавляют натрий – калиевую соль винной кислоты, чтобы ванадат не выпал в осадок.

Суммарные реакции:

абсорбция

получение серы

рекуперация ванадата при помощи АДА

окисление АДА кислородом воздуха

Достоинством процесса является возможность исключить очень токсичные арсениты.

2.2.4 Щелочно – гидрохиновый метод

Сущность метода в поглощении сероводорода щелочными растворами гидрохинона. При регенерации растворов выделяются элементарная сера и тиосульфата натрия. Гидрохинон является катализатором. Чем выше концентрация хинона в растворе, тем активнее раствор. Метод состоит из следующих стадий:

взаимодействие сероводорода с карбонатом натрия (содой)

окисление гид2росульфида натрия хиноном (окисленная форма гидрохинона)

регенерация соды

регенерация хинона

Последняя стадия осуществляется за счет кислорода, содержащегося в газе, и протекает параллельно с процессами поглощения и окисления сероводорода. Более полную регенерацию хинона проводят в регенераторах.

В процессе абсорбции протекает следующая побочная реакция:

Накопление в растворе

и
приводит к снижению его поглотительной способности вследствие уменьшения концентрации карбоната натрия и снижения рН среды. Для поддержания активности поглотительного раствора непрерывно добавляют свежие растворы соды и гидрохинона. Для поддержания рН раствора в пределах 9 – 9,5 добавляют 42%-й раствор едкого натрия.

Абсорбцию сероводорода проводят в полом абсорбере с форсунками или плотности орошения 4,35 м3/ч на 1 м3 орошаемого объема. Раствор регенерируют, пропуская через него (барботаж) сжатый воздух. При этом происходит окисление гидрохинона до хинона и флотации выделившейся серы, которую в виде пены собирают на поверхности раствора. Одновременно здесь же происходит окисление части гидросульфида др тиосульфата. Серная пена собирается в пеносборнике, а затем поступает на вакуум – фильтр, где происходит ее отделение. Полученную серу плавят в автоклаве.

Метод позволяют очистить газ от начального содержания сероводорода в газе 0,185 г/м3 до 0,02 г/м3. степень очистки газа зависит от концентрации в нем сероводорода, скорости движения газа в абсорбере и интенсивности орошения, концентрации активных компонентов в растворе и его рН, температуры процесса, от равномерности распределения раствора в абсорбере.

2.2.5 Абсорбция этаноламинами

В этих методах сероводород поглощают растворами моноэтаноламина и триэтаноламина. Преимущественно используют 15 – 20%-й водный раствор моноэтаноламина, поскольку он обладает большей поглотительной способностью на единицу массы растворителя, большей реакционной способностью и легко регенерируется.

Технологическая схема очистки газов от сероводорода растворами этаноламина представлена на рис. 3.

Рис.3. Схема установки очистки газа от сероводорода раствором этаноламина: 1 – абсорбер; 2,5 – холодильники; 3,6 – теплообменники; 4 – регенератор.

2.3 Очистка газов от оксидов азота

2.3.1 Абсорбция водой

При абсорбции диоксида азота водой в газовую фазу выделяется часть оксида азота, скорость окисления которого при низких концентрациях мала:

Для утилизации оксидов можно использовать разбавленные растворы пероксида водорода с получением азотной кислоты:


Основным фактором, определяющим экономику процесса, является расход пероксида водорода. Он приблизительно равен 6 кг на 1 т кислоты в сутки.

Разработан процесс очистки газов водой и циркулирующей

. Физическая абсорбция оксидов азота в азотной кислоте увеличивается с ростом концентрации кислоты и парциального давления
. Увеличение поверхности контакта способствует протеканию процесса, так как на границе раздела фаз идет реакция окисления NO в NO2. Для интенсификации процесса используют катализатор. Степень очистки может достигать 97%.

2.3.2 Абсорбция щелочами

Для очистки газов применяют различные растворы щелочей и солей. Хемосорбция диоксида азота раствором соды протекает по уравнению:

Уравнения для хемосорбции

различными щелочными растворами или суспензиями представлены ниже:

При абсорбции

активность щелочных растворов убивает в такой последовательности:

1 0,84 0,80 0,78 0,63 0,56 0,51 0,44 0,4

0,40 0,39 0,35

Цифры под каждым из щелочных растворов показывают их активность относительно раствора

, активность которого условно принята за единицу. Данные приведены для начальной концентрации растворов 100 г/л и времени проскока газа 10 мин. Активность щелочных растворов определяется начальным рН раствора. Активность тем выше, чем выше этот показатель.

При абсорбции растворами аммиака образуются соединения с низкой температурой разложения. Например, образующийся нитрит аммония

при 560С полностью распадается:

2.3.3 Селективные абсорбенты

Для очистки газов от

при отсутствии в газовой фазе кислорода могут быть использованы растворы
для первых растворов протекают реакции с образованием комплексов:

При нагреве до 95 – 1000С комплекс

распадается и
выделяется в чистом виде, а восстановленный раствор вновь возвращают в производстве. Аналогично разлагается и комплекс
.

Раствор

является наиболее доступным и эффективным поглотителем. В качестве абсорбента могут быть использованы и травильные растворы, содержащие
. Поглотительная способность раствора зависит от концентрации
в растворе, температуры и концентрации
в газе. При температурах 20 – 250С раствор может поглощать
даже при небольших концентрациях. Предел растворимости оксидов азота соответствует соотношению
. Присутствие в растворе серной и азотной кислот, солей и органических веществ снижает его поглотительную способность. Однако наличие в растворе 0,5 – 1,5% (об.) серной кислоты предохраняет
от окисления кислородом воздуха до
.