2.5 АНТИФРИКЦИОННЫЕ ИЗДЕЛИЯ
Хорошо известно, что графит обладает свойством самосмазываемости, т.е. способностью в паре с металлом обеспечивать при трении малый износ и низкий коэффициент трения без подачи какой – либо дополнительной смазки. Это свойство графита и использовано в производстве углеграфитовых антифрикционных материалов. Поведение графита в процессе трения определяется свойствами его кристаллов: легкой расщепляемостью по плоскостям спайности и способностью прочно прилипать к трущимся поверхностям. Прочная связь графитовой пленки с плоскостями трения осуществляется за счет ненасыщенных связей, возникающих при расщеплении кристалликов графита. Углеграфитовые материалы применяются в качестве вкладышей радиальных и упорных подшипников, направляющих втулок, пластин, поршневых колец, поршневых и радиальных уплотнений в разнообразных машинах, приборах и механизмах. Преимущества этих материалов заключается в их способности работать без смазки в условиях высоких и низких температур, а также при очень высоких скоростях, в агрессивных средах и т.д.
3. СЫРЬЕВЫЕ МАТЕРИАЛЫ
Для производства всех типов углеграфитовых материалов применяют искусственные и естественные материалы, в которых главной составной частью является углерод.
К естественным материалам относятся антрациты и натуральные графиты. Основную же массу углеродистых материалов (преобладающую по своему количественному применению и фактическому значению) составляют искусственно приготовленные материалы.
Различные формы углерода получаются разложением органических веществ. Они могут образовываться из газовой или жидкой фазы, а также разложением твердых соединений. Из газовой фазы образуются, например, некоторые сорта сажи, а из жидкой – нефтяные коксы. Исходные материалы и способы переработки их оказывают решающее влияние на свойства сырьевых материалов.
Все сырьевые материалы, применяемые для производства углеграфитовых материалов, можно разделить на две основные группы: твердые углеродистые материалы и связующие вещества.
3.1 ТВЕРДЫЕ УГЛЕРОДИСТЫЕ МАТЕРИАЛЫ
3.1.1 АНТРАЦИТ
Антрацит – основной компонент угольных электродов и угольных блоков для кладки и футеровки печей, ванн и др. Использование антрацита в композициях улучшает эксплуатационные свойства изделий, главным образом, термостойкость. По сравнению с коксом, антрацит дает возможность получать более прочные и электропроводные изделия.
Основные требования к качеству антрацита – высокая электропроводность, механическая прочность, термическая стойкость, низкая зольность и сернистость.
При нагревании антрациты склонны к растрескиванию, причем чем быстрее поднимается температура, тем резче проявляется растрескивание. При одной и той же скорости нагревания разрушение антрацита тем больше, чем меньше степень метаморфизма. Наибольшей термической стойкостью (т.е. наименее разрушаются при тепловом ударе) обладают высоко метаморфизированные антрациты с плотностью органической массы более 1460 кг/м3.
Кроме степени метаморфизма на термостойкость антрацита влияют структурные особенности. Макроскопические антрациты литого строения с хорошо или слабо выраженным раковистым изломом, как правило, оказываются термически нестойкими.
Несмотря на внешнюю однородность, антрацит по своей структуре является сложным конгломератом. Только небольшая часть зольных примесей распределена равномерно в углистом веществе, значительная же часть зольных примесей распределена неравномерно. Большая их часть сосредоточена в тонких прослойках и отдельных включениях.
В производстве электродных и электроугольных изделий применяются донецкие антрациты, которые по своим свойствам удовлетворяют требования промышленности. Для получения изделий высокого качества необходимо, чтобы антрацит имел максимальное содержание углерода при минимальном количестве балласта в виде золы, серы и влаги.
3.1.2 ГРАФИТ
Графиты применяют в производстве большинства углеграфитовых материалов. Роль, которую они выполняют в технологии этих материалов, различна. При производстве электродов введение графита в массу улучшает ее пластичность, снижает внутреннее трение массы, а также трение о стенки контейнера и мундштука, что обеспечивает получение более плотных изделий. В этом случае вводится небольшое количество графита (4 – 6 %), но даже такое количество влияет на увеличение электропроводности, теплопроводности и термостойкости электродов.
Главным показателем качества промышленных марок графита служат зольность и гранулометрический состав. Эти показатели достаточны только в том случае, если речь идет о графите определенного месторождения и способа изготовления, так как при одинаковом их значении графиты разного происхождения могут сильно отличаться по другим свойствам.
Натуральные графиты содержат примесь минералов, не полностью удаленных при обогащении руд. Этими минералами являются силикаты, кварц и кальцит. Из примесей, вносимых при обогащении графитовых руд, следует назвать флотационные реагенты – главным образом масло, металлическое и окисленное железо, попадающее в графит во время размола в мельницах. Эти примеси заметно влияют на такие свойства графитовых материалов, как электропроводность и способность пластифицировать электродную массу.
3.1.3 КОКС
Кокс – один из важнейших видов сырья для электродного и электроугольного производства, особенно для графитовых изделий и электроуглей.
Производится два вида малозольных коксов: нефтяные и пековые. Первые получают коксованием нефтяных остатков, вторые – переработкой на кокс каменноугольного пека.
Нефтяные коксы получаются при коксовании различных нефтяных остатков. Свойства нефтяных коксов зависят главным образом от вида исходного сырья. Поэтому нефтяные коксы разделяют по роду нефтяных остатков, из которых они получаются, на две группы: крекинговые и пиролизные. В пределах каждой из этих групп приходится различать еще некоторые разновидности, т.к. пиролиз и крекинг производятся различными способами с применением различной аппаратуры и различном температурном режиме, что в значительной степени влияет на свойства и состав полученных остатков.
Различная микроструктура пиролизного и крекингового коксов существенно влияет на технологические условия производства изделий из этих коксов. Большое количество закрытых микропор в крекинговом коксе осложняет прессование, ведет а образованию в изделиях трещин после снятия нагрузки.
В настоящее время производство нефтяных коксов осуществляется в основном двумя способами: коксование в металлических обогреваемых кубах и замедленное коксование в необогреваемых камерах.
Рис. 2 Принципиальная схема установки замедленного коксования: 1 – коксовые камеры; 2 – нагревательная печь; 3 – ректификационная колонна; 4 – холодильник – конденсатор; 5 – газосепаратор; I – сырье; II – газ; III – вода; IV – бензин; V – легкий газойль; VI – тяжелый газойль; VII – кокс
В настоящее время более широкое применение нашел способ замедленного коксования. Сущность процесса заключается в том, что предварительно нагретое до высокой температуры (500 0С) сырье закачивается в необогреваемые изолированные снаружи реакторы, где производится коксование за счет аккумулированного сырьем тепла.
Первичное сырье после нагрева в печи 2 до 400—405°С смешивается с циркулирующим продуктом в нижней части ректификационной колонны 3, в которой осуществляется выделение газойлевых фракций. Часть их после охлаждения в холодильнике – конденсаторе 4 до 80°С возвращается через сепаратор 5 в колонну в качестве орошения.
В одном блоке по разным схемам устанавливают два или четыре реактора. В нагревательной печи обычно бывает два сырьевых потока. Ректификационные колонны могут быть использованы и для разделения газойля на легкий и тяжелый.
После ректификации смесь исходного сырья при температуре 380-400 °С подается снова в печь для нагрева до 475-510 °С. Нагретое сырье через распределитель, оборудованный четырехходовыми кранами, поступает снизу в один из реакторов.
После заполнения реактора коксом горячий поток сырья переключают в следующий подготовленный реактор. Температура в реакторе 470—480 °С, давление в камерах (избыточное) до 1,7ат. Аппарат рассчитан на заполнение в течение 24 ч. Заполненный коксом аппарат после отключения пропаривают с целью отгона от кокса дистиллятных нефтяных фракций, которые направляются в ректификационную колонну 3.
Затем кокс охлаждают водой и после охлаждения производят выгрузку, осуществляемую гидравлическим методом, т.е. струей воды, вводимой специальными устройствами (резаками) в пробуренную центральную скважину под давлением 150 кг/см2. Кокс вместе с водой попадает в передвижной бункер-дробилку, где дробится до кусков размерами 100—200 мм и падает в приемник. Смесь кокса и воды (1:6) поступает в бункеры, откуда обезвоженный кокс грузят в вагоны или в автомашины.