[Cu(NH3)4]SO4 =>[Cu(NH3)4]2SO42-. [9]
(Під час запису константи дисоціації в квадратні дужки беруть рівноважні концентрації іонів). Константа дисоціації характеризує термодинамічну стійкість комплексу, що залежить від енергії зв'язку між центральним атомом і лігандом. Розрізняють також кінетичну стійкість, або інертність, комплексної угруповання - нездатність комплексного іона швидко обмінювати внутрішньосферні іони або молекули на інші адденди. Наприклад, [Ne(H2O)6]3 і [Cr(H2O)6]3 мають майже однакові енергії зв'язку Me - Н2O (116 і 122 ккал/моль), але перший комплекс обмінює ліганди швидко, а другий (інертний) -повільно .
Число іонів або молекул, безпосередньо пов'язаних з центральним атомом, називається його координаційним числом (К. ч.). Наприклад, в комплексне з'єднання К4[Fe(CN)6], Ті(CO)7 і [Cu(NH3)4]SO4. К. ч. центральних атомів рівні, відповідно, 6, 7 і 4. К. ч. у різних комплексоутворювачів різні, їх значення змінюються в залежності від розмірів і хімічної природи центральних атомів і лігандів. В даний час відомі комплексні числа від 1 до 12, однак частіше за все доводиться мати справу з комплексні числа 4 та 6. [6]
Складові частини комплексних сполук надзвичайно різноманітні. Як центральних атомів-комплексоутворювачів найчастіше виступають атоми перехідних елементів (Ті, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Та, W, Re, Os, Ir, Pt, Au, Hg, рідкоземельні елементи, елементи групи актиноїдів), а також деякі неметали, наприклад В, Р, Si. Лігандами можуть бути аніони кислот (F-, С1-, Br-, I-, CN-, SО42-, РО43- ) і найрізноманітніші нейтральні органічні й неорганічні молекули і радикали, що містять атоми О, N , Р, S, Se,C.[3]
Комплексні сполуки з аніонами кислот у внутрішній сфері (ацидокомплекси) - найбільш типові представники неорганічних комплексів. Найпоширенішим лігандом є вода. При розчиненні простих солей у воді утворюються аквакомплекси, наприклад, за схемою СоС12*6Н20 => [Co(H2O)6]С12. Кристалічні аквакомплекси називаються кристалогідратами. Теорія будови комплексних сполук бере свій початок від уявлень А. Вернера (1893), який ввів важливі для цілого історичного періоду поняття «головною» і «побічної» валентності, а також подання про координацію, координаційній числі, геометрії комплексної молекули. Значний внесок у дослідження хімії комплексних сполук, і, зокрема, у встановлення зв'язку між будовою комплексного з'єднання і реакційною здатністю координованих груп, внесли радянські вчені Л. А. Чугаєв, I.I. Черняєв та інші. Однак класична координаційна теорія виявилася безсилою пояснити причини утворення комплексних сполук деяких нових класів, передбачити їх будову, а також встановити взаємозв’язок між будовою і фізиними властивостями.[11]
Поняття про хелати
Ліганди характеризуються дентатністю (дентатус - зубчастий).
Є ліганди, які містять два атоми, просторове положення яких дозволяє їм одночасно утворювати по одному зв'язку з кислотних гідроксидів (наприклад, СO32-, SO32-, SO42-, РO43- тощо) або молекули органічних сполук (наприклад, оксалатна кислота (Н2С2O4), етилендіамін -(CH2)2(NH2)2 - en).
Координаційні сполуки, утворені за участю бі- чи полідентатних лігандів, називаються хeлатами або клешневидними (грецьке chelle -клешня).
Різновидністю халатів є внутрішньокомплексні сполуки, тобто хелати, в яких один і той же ліганд зв'язаний з центральним атомом йонним і ковалентним зв'язками (ковалентний зв'язок виникає за донорно-акцепторним механізмом).
У нікол(2) диметилгліоксиматі є 4 цикли: два п'ятичленні і два шестичленні. Утворення шестичленних циклів обумовлено водневими зв'язками. Шести- і п'ятичленні цикли найстійкіші і зовсім нестійкі тричленні цикли.[7]
Якщо ліганд монодентатний, то координаційне число лігандів дорівнює числу лігандів, які координує центральний атом. Наприклад, [Cu(NH3)4]2+, координаційне число дорівнює 4, оскільки ліганд NH3 - монодентатний, 4 молекули NH3 займуть 4 місця навколо центрального атома (Сu2+ -іона).
У бі- чи полідентатних лігандів значення координаційного числа у скільки разів менше від числа монодентантних лігандів, у скільки, разів більша їх полідентатність.
За природою ліганда координаційні сполуки
1) аквакомплекси (приклад: [Cr(OH2)6]3+, [Fe(OH2)6]3+ тощо). Як окремий випадок аквакомплексів є зверх комплекси. Наприклад: CuSO4*5H2O, FeSO4*7H2O, ([Cu(OH2)4]SO4*H2O, [Fe(OH2)6]SO4*H2O);
2) амінокомплекси ( приклад: [Co(NH3)6]3+, [Ag(NH3)2]+ тощо );
3) гідроксокомплекси ( приклад: [Сг(ОН)6]3-, [А1(ОН)6]3- тощо);
4) ацидокомплекси ( приклад: [A1F6]3-, [FeC16]3- тощо);
5) полігалогеніди ( приклад: К[І*І2]- калій дийодойодид, КІЗ- калій три йодид тощо);
6) гідридокомплекси ( приклад: Li[AlH4] тощо) та ін.;
7) карбонілкомплекси ( приклад: [Fe(CO)5], [Ni(CO)4] тощо);
Подвійні солі відрізняються від координаційних сполук тим, що складні йони, які є у кристалічній структурі подвійних солей, не можуть самостійно існувати у водних розчинах, вони повністю розпадаються на складові частини подвійних солей. Наприклад:
K2SO4*A12(SO4)3 --> 2К+ + 2А13+ + 4SO42- y водних розчинах всі ці складові частини виявляються характерними реакціями їх.[8]
За знаком заряду комплекса координаційної сполуки
1) катіонні комплекси ( приклад: [Co(NH3)6]C13, [Zn(NH3)4](OH)2 тощо);
2) аніонні комплекси ( приклад: К[ВіІ4], K2[HgI4] тощо);
3) нейтральні комплекси ( приклад: [Pt(NH3)2C12], [Co(NH3)3C13] тощо).
Координаційні сполуки без зовнішньої координаційної сфери не мають електролітичної дисоціації за першим ступенем, тобто не дисоціюють як сильні електроліти.[5]
Внутрішньокомплексні сполуки
Константа нестійкості комплексів Схематично процес комплексоутворення можна уявити у вигляді: М + nL --> MLn; застосувавши закон дії мас: де Кн - константа нестійкості комплексу.
Чим менша Кн, тим стійкіший комплекс. Зручніше застосовувати constусталеності комплексу ДО = 1/Кн - чим вище, тим стійкіше комплекс. Може бути до 1030.
Полідентальні ліганди, що при координації на атомі металу замикають одне або декілька каблучок, називаються хелатними лігандами. Координаційні сполуки, що вони утворюють називаються внутрішньокомплексними. Приклади: щавлева кислота, етилендиамін NH2-CH2-CH2-NH2.
Всі атоми азоту можуть утворювати координаційні зв'язки з іонами металу, наприклад Zn2+. Комплекс утвориться таким чином, що кожний атом азоту використовує свою неподільну пару для утворення координаційного зв'язку з Zn2+, у результаті чого, атоми азоту розташовуються приблизно тетраедрично в координаційній сфері комплексоутворювача.[3]
Найбільше відомим хелатним лігандом є ЕДТА - являє собою гексадентантний ліганд, що утворить комплекси з багатьма 2-х і 3-х валентними іонами перехідних металів, а також із 2-х валентними іонами лужноземельних металів.
Важливою особливістю хелатних комплексів є їхня підвищена усталеність у порівнянні зі структурно подібними монодентантними комплексами. Так, наприклад, для комплексу Zn2+ із триамінотриетиламіном ДО = 5 □ 1014, тоді як для [Zn(NH3)4]2- = 109, тобто в 5 - 105 разів нижче, хоча зв'язку ті ж самі.
Це обумовлено тим, що атоми азоту не можуть вільно переміщатися розчині, незалежно один від одного, оскільки вони пов'язані між собою. У цьому ікладається суть хелатного ефекту. Хелатні ліганди називаються комплексонами. Хелатні ліганди часто утворюють з іонами металів різні зв'язки - ковалентні і донорно-акцепторні.
Крім зазначених сполук мають комплексони, що утворюють із центральним іоном зв'язки за рахунок електростатичної взаємодії - так звані макроциклічні комплекси.
Комплекси можуть утворюватися як із перехідними і лужноземельними металами, так і з лужними металами, що взагалі більше, мабуть, і не зустрічається - за рахунок електростатичного тяжіння між позитивно зарядженим іоном металу і зарядженими гетероатомами. Причому, чим краще порожнина комплексона підходить до радіуса металу (для іонів,які мають однакову поверхню), тим стійкіше будуть комплекси. До циклічних поліефірів приєднують різноманітні функціональні групи, за допомогою яких можна збільшити константу нестійкості комплексу ліганда з визначеними металами. Наприклад, дибензо-18-краун-6.
Замкнувши диаза-18-краун-6 по азотах ще одним ланцюжком одержують біциклічну структуру - катіон утворюється цілком оточеним від’ємними зарядами гетероатомів і йому набагато гірше звідти вийти, що підвищує стійкісь комплексів.[5]
Комплекси, утворені за рахунок киснів карбоксильньїх груп (ЕДТА), звичайно, електронейтральні. Комплекси, утворені тільки за рахунок донорно-акцепторних зв'язків з атомами азоту, або за рахунок електростатичного тяжіння являють собою іони.
Природа координаційного зв'язку
Зв'язки можуть мати чисто електростатичний характер - за рахунок притягування між негативними зарядженим лігандом або диполем лігандом (коли один з атомів ліганда має - заряд) і позитивно зарядженим центральним іоном. Приклад - макроциклічні поліефіри. При утворенні комплексів зв'язок може бути донорно-акцепторний - виникає за рахунок неподільних електронних пар лігандів. Ці електронні пари надходять у загальне використання ліганда і центральний іон, займаючи при цьому вільні гібридні орбіталі комплексоутворювача (приклади лігандів ОН-, F-, С1-).[8]
Ліганди можуть мати неподільну Dелектронну пару і вакантні орбіталі.
При утворенні донорно-акцепторних зв'язків виникають гібридні орбіталі за участю s, p, dелектронів.
У випадку, якщо в гібридизації беруть участь тільки sі р орбіталі з утворенням spабо sp3 гібридних орбіталей, зв'язок має значний іонний характер.