Смекни!
smekni.com

Висмут и его соединения в природе (стр. 1 из 7)

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. ОБЩИЕ СВЕДЕНИЯ О ВИСМУТЕ

1.1 Происхождение висмута

1.2 Физические свойства

1.3 Химические свойства

1.4 Получение висмута

2. НАХОЖДЕНИЕ В ПРИРОДЕ

2.1 Содержание в земной коре

2.1.1 Висмутин

2.1.2 Прочие руды, содержащие висмут

2.1.3 Добыча и производство

2.2 Содержание в воде

3. ФИЗИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ ВИСМУТА

4. ПРИМЕНЕНИЕ В ПРОМЫШЛЕННОСТИ

4.1 Применение в металлургической промышленности и машиностроении

4.2 Применение в медицине

4.3 Другие способы применения

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Среди элементов периодической системы висмут – последнийпрактически не радиоактивный элемент, И он же открывает шеренгу тяжелых элементов – естественных альфа-излучателей. Действительно, тот висмут, который мы знаем по химическим соединениям, минералам и сплавам, принято (и не без оснований) считать стабильным, а между тем, тонкими экспериментами установлено, что стабильность висмута –кажущаяся. В действительности же ядра его атомов иногда «гибнут», правда, очень нечасто: период полураспада основного природного изотопа висмута

– более
лет. Это примерно в полмиллиарда раз больше возраста нашей планеты...

Кроме висмута-209, известны еще 26 изотопов элемента № 83. Все они радиоактивны и короткоживущие: периоды полураспада не превышают нескольких суток.

Двадцать изотопов висмута с массовыми числами от 189 до 208 и самый тяжелый

подучены искусственным путем, остальные - 210Bi, 211Bi, 212Bi, 213Bi и 214Bi – образуются в природе в результате радиоактивного распада ядер урана, тория, актиния и нептуния.

Таким образом, несмотря на то что на практике мы встречаем лишь практически стабильный висмут-209, не следует забывать о важной роли элемента № 83 во всех областях знания, так или иначе связанных с радиоактивностью. Не будем, однако, впадать в другую крайность. Практическую важность приобрел прежде всего стабильный (или правильнее – псевдостабильный) висмут. Поэтому именно ему быть главным «героем» дальнейшего повествования.

1. ОБЩИЕ СВЕДЕНИЯ О ВИСМУТЕ

1.1 Происхождение висмута

Висмут (лат. Bismuthum) – химический элемент V группы периодической системы Д.И. Менделеева. Среди нерадиоактивных элементов висмут имеет самый большой атомный номер – 83 и атомную массу – 208,9804.

Происхождение названия этого элемента трактуют по-разному. Одни исследователи склонны считать его производным от древнегерманского слова «Wismuth» (белый металл), другие – от немецких слов «Wiese» (луг) и «muten» (разрабатывать рудник), поскольку в Саксонии, висмут издревле добывали на лугах округа Шнееберг. Есть еще одна версия, согласно которой название элемента произошло от арабского «би исмид», что означает «обладатель свойств сурьмы». Висмут действительно на нее очень похож. Какая из этих точек зрения наиболее близка к истине, сказать трудно. Нынешний символ элемента №83, Bi, впервые введен в химическую номенклатуру в 1819 г. шведским химиком Берцелиусом.

Висмут известен со средневековья (впервые упомянут в письменных источниках в 1450 году как Wismutton или Bisemutum). Первые сведения о висмуте появились в начале XVI в. в трудах минералога и металлурга Георга Бауэра (Агриколы). Однако до XVIII века его считали разновидностью свинца, олова или сурьмы. Лишь в 1753 француз Клод Жофруа (ClaudeJ. Geoffroy) высказал мнение, что это отдельный элемент. Эту точку зрения подтвердил в 1793 г. Потт (J. H. Pott), описавший свойства висмута. В 1739 г. немецкий химик Потт установил самостоятельность элемента висмута. Окончательно как элемент он был открыт в 1799 г. шведским химиком Т. Бергманом.

Известный металлург и минералог средневековья Георг Агрикола в своей книге "О месторождениях и рудниках в старое и новое время", написанной в 1546 году, возвел висмут в ранг одного из основных металлов, присовокупив его к известной с древности "великолепной семерке" - золоту, серебру, меди, железу, свинцу, олову и ртути. Однако окончательно "права гражданства" висмут обрел лишь в XVIII веке. Этому металлу, пожалуй, как ни одному другому химическому элементу, повезло с названиями: по подсчетам некоторых ученых, в литературе XV-XVIII веков можно встретить более 20 "псевдонимов" висмута и среди них такие выразительные, как демогоргон, глаура, нимфа.

Висмут является последним членом подгруппы мышьяка. Относится к халькофильным элементам. Ближайшие аналоги висмута — сурьма и свинец. Кларк его по А. П. Виноградову составляет 9–10%. Содержание висмута повышается от ультраосновных магматических пород (1–10%) к кислым (1– 10%). Он представлен одним изотопом с массовым числом 209. Характеризуется переменной валентностью, в природных условиях преобладает Bi3+. Высокое сродство к сере, способность существовать в свободном состоянии и склонность к образованию основных солей определяют важнейшие формы нахождения висмута в природе. На магматическом этапе висмут не концентрируется. Его накопление связано с постмагматическими процессами гранитоидных магм. Из магматических очагов он выносится в хлоркомплексах (BiCl2+, BiCl0) и гидрооксокомплек-сах (Bi(OH)3, Bi(OH)2J). При экзогенных процессах первичные сульфидные соединения висмута окисляются (образуются оксидные и карбонатные соединения). При слабом проявлении процессов окисления висмутин и самородный висмут могут образовать россыпи.

1.2 Физические свойства

Висмут – это серебристо-серый металл с розоватым оттенком, хрупкий, легкоплавкий, плотность при 20 оС – 9,80 г/см3. Висмут — белый металл с розоватым оттенком. При комнатной температуре Висмут легко раскалывается по плоскостям спайности, в фарфоровой ступке растирается в порошок.Он обладает диамагнитностью, плохой теплопроводностью, низкой температурой плавления (271,4 оС), высокой температурой кипения (1560 °С) и способностью расширяться в объеме при затвердевании. Удельная магнитная восприимчивость равна -1,35·10-6. Висмут – самый диамагнитный металл: если его поместить между полюсами обычного магнита, то он, стремясь с одинаковой силой оттолкнуться от обоих полюсов, займет положение на равном от них расстоянии. Под влиянием магнитного поля электрическое сопротивление висмута увеличивается в большей степени, чем у других металлов; этим его свойством пользуются для измерения индукции сильных магнитных полей (прибор, служащий для этой цели, называется висмутовой спиралью). После расплавления висмута его электросопротивление падает вдвое, а при охлаждении резко возрастает (например, при понижении температуры от нуля до -180° С сопротивление этого металла увеличивается в 60 раз).

Рис. 1. Диаграмма состояния висмута при высоких давлениях. Пунктирные линии-приблизительные границы областей существования фаз.

Сечение захвата тепловых нейтронов у Висмута мало (34·10-31 м2 или 0,034 барна). Висмут и его соединения обладают дезинфицирующими и антисептическими свойствами. Он устойчив к действию кислорода и воды и растворим в концентрированной серной кислоте.

Висмут имеет ромбоэдрическую решетку с периодом а = 4,7457 Å и углом ά = 57°14'13". Удельная теплоемкость (20 °С) 123,5 Дж/(кг·К) [0,0294 кал/(г·°С)]; термический коэффициент линейного расширения при комнатной температуре 13,3·10-6; удельная теплопроводность (20 °С) 8,37 вт/(м·К) [0,020 кал/(см·сек·°С)]; удельное электрическое сопротивление (20° С) 106,8·10-8 ом·м (106,8·10-6ом·см). При температуре 120-150°С ковок; горячим прессованием (при 240-250°С) из него можно изготовить проволоку диаметром до 0,1 мм, а также пластинки толщиной 0,2-0,3 мм. Твердость по Бринеллю 93 Мн/м2 (9,3 кгс/мм2), по Моосу 2,5. При плавлении Висмут уменьшается в объеме на 3,27%.

Таблица 1. Характеристика некоторых кристаллических модификаций висмута.

1.3 Химические свойства

Висмут в сухом воздухе устойчив, во влажном наблюдается его поверхностное окисление. При нагревании выше 1000° С сгорает голубоватым пламенем с образованием оксида Bi2O3. В ряду напряжений Висмут стоит между водородом и медью, поэтому в разбавленной серной и соляной кислотах не растворяется; растворение в концентрированных серной и азотной кислотах идет с выделением SO2 и соответствующих оксидов азота.

Висмут проявляет валентность 2, 3 и 5. Соединения Висмута низших валентностей имеют основной характер, высших - кислотный. Из кислородных соединений Висмута наибольшее значение имеет оксид Bi2O3, при нагревании меняющий свой желтый цвет на красно-коричневый. Bi2O3 применяют для получения висмутовых солей. В разбавленных растворах висмутовые соли гидролизуются. Хлорид BiCl3 гидролизуется с выпадением хлороксида BiOCl, нитрат Bi(NO3)3 - с выпадением основной соли BiONО3·BiOOH. Способность солей Висмут гидролизоваться используется для его очистки.

Соединения 5-валентного Висмута получаются с трудом; они являются сильными окислителями. Соль КВiO3 (соответствующая ангидриду Bi2O5) образуется в виде буро-красного осадка на платиновом аноде при электролизе кипящего раствора смеси КОН, КСl и взвеси Bi2O3. Висмут легко соединяется с галогенами и серой. При действии кислот на сплав висмута с магнием образуется висмутин (висмутистый водород) BiH3; в отличие от арсина AsH3, висмутин - соединение неустойчивое и в чистом виде (без избытка водорода) не получено. С некоторыми металлами (свинцом, кадмием, оловом) Висмут образует легкоплавкие эвтектики; с натрием, калием, магнием и кальцием - интерметаллические соединения с температурой плавления, значительно превышающей температуры плавления исходных компонентов. С расплавами алюминия, хрома и железа висмут не взаимодействует.