2.3 Перенос импульса
Врассмотренных выше явлениях переноса массы и энергии переносимые субстанции являлись скалярными величинами, поток скалярной величины есть вектор. В случае переноса векторной величины, каковой является импульс, ее поток будет обладать большей размерностью, а именно, представлять собой тензор второго ранга, для задания которого требуется уже 9 чисел (скаляр задается одним, вектор - тремя).
2.3.1 Конвективный перенос
В простейшем случае, когда среда движется с некоторой конвективной скоростью
Если представить теперь, что эта система или ее часть совершает дополнительно конвективное движение в направлении оси Y. Тогда импульс ρWx будет переноситься и в направлении оси Y. Количество движения, направленного вдоль оси X, переносимое за единицу времени через единичную поверхность в направлении оси Y, будет равно
Аналогичным образом можно рассмотреть перенос импульса в лабораторной системе отсчета по всем направлениям, что даст 9 компонентов тензора конвективного потока импульса,
Запись в квадратных скобках является тензорным произведением двух векторов.
2.3.2 Молекулярный перенос
Рассмотрим движение среды в направлении оси X (рис. 1). При этом скорость
Рис. 1
Это приведет к уменьшению неоднородности поля скорости
Количество движения, направленного вдоль оси X (
где μ [Па.С] и ν [м2/с] - коэффициенты динамической и кинематической молекулярной вязкости соответственно. Это уравнение носит название закона вязкости Ньютона. В случае если коэффициенты вязкости не зависят от величины производной д т-л Wx/ дy, т.е. зависимость
Можно рассмотреть и иную трактовку закона вязкости Ньютона. Как известно из механики, в соответствии со вторым законом Ньютона изменение импульса за единицу времени есть сила. Перенос импульса между слоями среды, движущимися с различными скоростями, можно трактовать как проявление силы трения. С этой точки зрения
недиагональные - касательных или сдвиговых. В общем случае, когда сжимаемая среда движется во всех направлениях (например, при вращательном движении), тензор вязких напряжений имеет более сложный вид.
2.3.3 Турбулентный перенос
Перенос импульса за счет турбулентного механизма может рассматриваться по аналогии с молекулярным:
где где μт и νт - динамический и кинематический коэффициенты турбулентной вязкости, определяющиеся свойствами среды и режимом движения νт ≈ DТ.
Остальные 8 элементов тензора могут быть найдены аналогично.
Суммарный поток импульса в лабораторной системе отсчета можно записать как
где
В умеренно плотных газах коэффициенты молекулярного переноса с достаточной степенью точности могут рассчитываться по соотношениям кинетической теории на основе динамических характеристик молекул. Статистико-механическое описание переноса в плотных средах затруднено вследствие многочастичности межмолекулярного взаимодействия, что предопределяет использование на практике экспериментальных данных или полуэмпирических формул. Следует отметить, что при одновременном наличии в системе нескольких движущих сил, например, градиентов температуры и концентрации, возникают так называемые, "перекрестные эффекты", т.е. градиент температуры вызывает поток массы, а градиенты концентраций - поток тепла (явление термодиффузии). Вследствие относительной малости этих эффектов в практике инженерных расчетов типовых процессов и аппаратов химической технологии ими обычно пренебрегают. При наличии диффузионных потоков компонентов за скорость конвективного переноса энергии и импульса обычно принимается среднемассовая скорость
Список использованной литературы
1. Дытнерский Ю.И. Процессы и аппараты химической технологии: Учебник для вузов. Изд. 3-е. В 2-х кн.: Часть 1. Теоретические основы процессов химической технологии. Гидромеханические и тепловые процессы и аппараты. М.: Химия, 2002. - 400с.: ил.
2. Разинов А.И. Явления переноса: Учеб. пособие / А.И. Разинов, Г.С. Дьяконов.: Казан. гос. технол. ун-т. - Казань, 2002. – 136 с.
3. Берд Р. Явления переноса: Пер. с англ. / Р. Берд, В. Стюарт Е. Лайфут. – М.: Химия, 1974. – 688 с.