Электронное строение аллилового спирта
Атом кислорода гидроксильной группы имеет sp3 гибридизацию. Средние длины связей 0,143 нм (С - О) и 0,091 нм (О - Н). Обе связи полярны. Однако некоторые ученые считают их в значительной мере поляризованными электроотрицательным атомом кислорода [12, 24, 26, 31].
Относительно высокие значения температуры кипения и диэлектрической проницаемости аллилового спирта объясняют полярностью группы ОН- и ее способностью образовывать водородные связи. Кислород является более электроотрицательным элементом, по сравнению с углеродом, и поэтому электронная плотность смещена в сторону кислорода. Дипольный момент ОН- группы равен 5,5·1028 Кл·м [4].
Функциональная группа спиртов содержит электроотрицательный атом кислорода с двумя неподеленными парами электронов. Его конфигурация близка к тетраэдрической и показана на рис. 1[4, 33].
Рис. 1. Конфигурация функциональной группы спиртов
В молекуле спиртов можно выделить следующие реакционные центры, показанные ниже на рис. 2 [4, 12, 13, 33]:
• ОН - кислотный центр, обусловливающий возможность отщепления
протона вследствие высокой полярности связи О - Н;
• нуклеофильный и n-основный центр — атом кислорода, имеющий не -поделенные пары электронов;
• электрофильный центр — α-атом углерода, на котором дефицит электронов вызван — I-эффектом соседней гидроксильной группы;
• β – СН - кислотный центр, в котором поляризация связи С - H также обусловлена электроноакцепторным влиянием гидроксильной группы.
Рис. 2. Реакционные центры спиртов
Большинство реакций спиртов протекают с разрывом связей О - Н или
С - О.
Для спиртов также характерны реакции, в которых участвуют
α – Н - атом (окисление), β – Н - атом (дегидратация) или δ – Н – атом
(окислительная циклизация) [2].
Гидроксильная группа в молекуле аллилового спирта отдалена от двойной связи, поэтому в данном соединении не наблюдается сопряжения связи с заместителем и поляризующее влияние на его π - связь проявляется в значительно меньшей степени, чем в молекулах винильных соединений. Эти особенности химического строения аллилового спирта обуславливают его малую реакционную способность в процессах полимеризации. Еще менее активен его радикал [3].
Электронное строение воды
Молекула воды полярна. Угол НОН составляет 104,5˚. Связь О - Н является ковалентной полярной. Между молекулами воды возникает водородная связь, которая изображается точками [12].
…Нσ+ Оα-… Нσ+ Оα-… Нσ+…Нσ+…
Связи О - Н в молекулах воды имеют заметный полярный характер с избытком отрицательного заряда σ- на атоме кислорода. Атом водорода, наоборот, приобретает небольшой положительный заряд σ+ и может взаимодействовать с неподеленными парами электронов атома кислорода соседней молекулы воды.
Взаимодействие между молекулами воды оказывается достаточно сильным, таким, что даже в парах воды присутствуют димеры и тримеры состава (Н2О)2, (Н2О)3 и т. д. В растворах же могут возникать длинные цепи ассоциатов, поскольку атом кислорода имеет две неподеленные пары электронов.
Дипольный момент воды равен 6,1·1028 Кл·м
1.3.3 Химические свойства реагентов и продуктов реакции
Рассмотрим наиболее типичные реакции, в которые могут вступать реагенты и продукты реакции.
1.3.3.1 Химические свойства аллилового спирта
Аллиловый спирт, имея в молекуле кратную связь и гидроксильную группу, проявляет свойства спиртов и непредельных соединений:
1. Взаимодействие с галогенами с образованием β - дигалоидгидринов глицерина
Совершенно иначе, чем этиловый спирт, относится аллиловый спирт к хлору и брому; тогда как обыкновенный спирт дает с ними продукты замещения и окисления (напр. хлораль), аллиловый спирт прямо присоединяет два атома хлора, брома или йода, образуя β-дигалоидгидрины глицерина C3H6Cl2O, C3H6Br2O и C3H6J2O [2]:
,2,3-дибромпропанол-1
.2,3-дихлорпропанол-1
2. Реакция гидрирования [10]:
.пропанол-1
3. Реакция гидратации в присутствии кислорода с образованием глицерина [24]:
.глицерин
4. Окисление с образованием альдегида [24]
Окислителями переводится в альдегид - акролеин, дальнейшее окисление дает акриловую кислоту:
5. Взаимодействие со щелочными металлами с образованием алкоголятов [10]
Со щелочными металлами получаются алкоголяты, которые при действии хлористого аллила дают соответствующий этиловому эфиру аллиловый эфир (С3Н5)2О:
,алкоголят
6. Межмолекулярная дегидратация спиртов с образование простых эфиров [27]:
.этилаллиловый эфир
7. Взаимодействие с минеральными и органическими кислотами с образованием сложных эфиров
Образование сложных эфиров происходит при взаимодействии с минеральными и органическими кислотами [26]:
,аллилацетат
.8. Взаимодействие с магнийгалогеналкилами
Происходит замещение гидроксильного водорода на магнийгалоген и выделение углеводорода [10]:
.9. Взаимодействие с хлористым фосфором - PCl3 [31]
Треххлористый фосфор дает хлористый аллил C3H5Cl, изомерный с α- и β – хлорпропиленами:
.Аналогичным путем образуется йодистый аллил C3H5J:
.10. Гидратация под действием слабых минеральных кислот
При действии слабых минеральных кислот аллильный спирт способен присоединять элементы воды, причем превращается в пропиленгликоль который, вновь теряя воду, переходит уже в изомерный с аллиловым спиртом пропионовый альдегид или его продукты конденсации [24]:
1.3.3.2 Химические свойства хлористого аллила [10]
Свойства обусловлены легкостью замещения атома галогена.
1. Омыление хлористого аллила раствором шелочи [24]:
.2. Взаимодействие с минеральными кислотами с образованием дихлоргидринов
Например, взаимодействие хлористого аллила с хлорноватистой
кислотой, которая присоединяется по двойной связи. При этом образуются два изомера [33]:
α – дихлоргидрин | β – дихлоргидрин |
(1,3 – дихлорпропанол – 2 ) | (1,3 – дихлорпропанол – 2) |
1.3.3.3 Химические свойства воды [12, 44, 46 - 50]
Вода взаимодействует со многими веществами при обычной температуре.
1. Взаимодействие с активными металлами
Со щелочными и щелочноземельными металлами, с их окислами вода образует гидроксиды металлов и водород:
2H2O + Ca = Ca(ОН)2 + H2
,2H2O + 2Na = 2NaOH + H2
.Благородные металлы с водой не реагируют.
2. Взаимодействие с галогенами
Вода относится к химически активным соединениям, реагирует с фтором:
H2O + F2 = HF + O· (выделяется атомарный кислород),
O·+ F2 = ОF2 и др.
Хлор при нагревании или на свету разлагает воду с выделением атомарного кислорода:
H2O + Cl2 = HCl + HClO.
3. Взаимодействие с неметаллами
Вода вступает в реакцию и со многими неметаллами. Например, при взаимодействии с атомарным кислородом образуется пероксид водорода:
H2O + O = H2O2.
А при взаимодействии с фосфором образует фосфорную кислоту:
8H2O +2Р = 2Н3РО4+ 5 Н2
.4. Взаимодействие с оксидами с образованием кислот и оснований
Многие оксиды реагируют с водой, образуя основания:
CaO + H2O = Ca(OH)2,
Na2O + H2O = 2 NaOH.
Икислоты:
CO2 + H2O = H2CO3,
3H2O +Р2О5= 2Н3РО4.
5. Взаимодействие с солями с образованием кристаллогидратов
При взаимодействии с некоторыми солями образуются кристаллогидраты. При нагревании они теряют кристаллизационную воду: