Анализируя особенности ингибирующего действия ацетиленовых и
этиленовых производных, можно представить себе следующий меха-
низм. Наличие π-связей придает непредельным соединениям поверхностную активность. Независимо от механизма адсорбции на переходных металлах он носит характер специфического, хемосорбционного взаимодействия. Образовавшийся адсорбционный слой ПАВ экранирует поверхность и тормозит коррозионный процесс. В зависимости от каталитических свойств металла и строения ацетиленовых ПАВ может либо наблюдаться дальнейшее химическое превращение адсорбированного ингибитора, либо не наблюдаться. В -первом случае (переходные металлы, концевая С=С-связь, сопряжение ее с другими π-связями)происходят сложные адсорбционно-полимеризационные процессы, адсорбционный слой превращается в фазовый, полимолекулярный, поверхность металла практически полностью блокируется и достигается чрезвычайно высокая степень защиты. Во втором случае (тройная связь в середине молекулы или адсорбция соединений с концевой С=С-связью на непереходных металлах) процесс ограничивается созданием адсорбционных защитных слоев.Не исключены химические превращения ацетиленовых соединений и в объеме раствора с образованием различных, как правило, плохо растворимых продуктов конденсации, полимеризации, гидрогенизации. В этом случае эффективность защитного действия добавок невысока.
Этиленовые соединения, вероятно, не подвергаются столь глубоким
химическим превращениям. Их адсорбция в отсутствие дополнительных активных групп ограничивается созданием лишь адсорбционных защитных слоев, в связи с чем эффективность таких ингибиторов ниже, чем ацетиленовых.
Процессы полимеризации и конденсации характерны также для
ПАВ, имеющих кратные связи между атомами углерода и азота [34].
1.2.3 Кислородсодержащие соединения
В качестве ингибиторов кислотной коррозии из числа кислородсодержащих соединений описаны предельные спирты и их производные, фенол и его замещенные, альдегиды и кетоны, эфиры, карбоновые кислоты [14, 17, 23, 27, 28].
Предельные спирты обладают слабой адсорбционной способностью
на железе и металлах его подгруппы [31], поэтому их ингибирующее
действие невелико.Адсорбция спиртов на железе и никеле в кислых средах обратима, хотя и носит характер специфического взаимодействия за счет полярной ОН-группы, несущей отрицательный заряд. Адсорбируемость и защитные свойства спиртов растут в ряду С3—С6. В го же время на железе и ртути спирты С1—С4 адсорбируются только на отрицательно заряженной поверхности в результате кулоновского взаимодействия углеводородного радикала, несущего положительный заряд, и металла [35].
Емкостные и поляризационные измерения на железе в сульфатных
растворах [36] показали значительную поверхностную и ингибирую-
щую активность спиртов С4—С6. Рост длины углеводородной цепи и ее
разветвление ухудшают адсорбционные и ингибирующие свойства спиртов. Это можно объяснить с учетом предположения об адсорбции спиртов в виде положительно заряженной частицы и возникновения адсорбционного φ-потенциала положительного знака.
В присутствии галогенид-ионов наблюдается синергизм, который усиливается в ряду С1-> Вг- > I-.Синергизм объясняется ослаблением
гидратации галогенид-ионов в условиях стабилизации структуры воды
спиртами. Это приводит к усилению адсорбции галогенидов, улучшению экранирования поверхности и возрастанию ингибиторного эффекта.
Отмечают, что характер адсорбционного взаимодействия предельных спиртов с поверхностью, переходных металлов зависит от состояния поверхности, способа ее подготовки, предварительного контакта с тем или иным растворителем, электродного потенциала и даже времени адсорбции [31].При определенных условиях предельные
алифатические спирты могут адсорбироваться с образованием прочно
связанных с поверхностью продуктов распада. Введение в спирты до-
полнительных функциональных групп, а также переход к ароматиче-
ским оксипроизводным [16] усиливают адсорбцию н ингибиторные
свойства. Как было показано выше, ацетиленовые и этиленовые спирты
проявляют весьма высокие ингибиторные свойства.
Значительно большую ингибирующую эффективность при коррозии
железа в кислотах проявляют альдегиды. Бензальдегид и его произ-
водные обладают уже достаточно высокими ингибирующими свойствами[17, 18, 37]. Промышленное применение из ингибиторов этой группы имеет пока только формальдегид [22]. Кетоны с алифатическими радикалами уступают в эффективности альдегидам. Кетоны, один из радикалов которых является ароматическим, несколько более эффективны[25,26].
Уксусный альдегид можно считать проингибитором или ингибитором вторичного действия, так как высоким защитным свойством обладают в основном продукты его превращения. Частичное осмоление альдегида происходит и в объеме раствора, в котором находятся галогенид-ионы. В серной кислоте альдегид не подвергается превращениям,и поэтому малоэффективен как ингибитор. Отмечается, что уксусный альдегид, как ингибитор, а вернее продукты его химического превращения, проявляет синергизм с азотсодержащими ПАВ катион-
ного типа. Основания Шиффа, полученные взаимодействием различных алифатических и ароматических альдегидов и аминов, значительно активнее, чем исходные вещества, тормозят коррозию металлов [38,39]. Не исключено, что при использовании смеси аминов с альдегидами в качестве ингибиторов коррозии каталитически активных переходных металлов на их поверхности образуются основания Шиффа, чем и объясняется отмеченный выше синергизм.
Карбоновые кислоты являются слабыми ингибиторами коррозии [34].Механизм действия органических кислот в качестве ингибиторов можно,вероятно, свести к двум случаям. Так, судя по результатам работы[23], кислоты с длинной углеводородной цепью являются ингибиторами блокировочного типа. Кроме того, замедление анодного процесса в присутствии карбоновых кислот может быть связано с улучшением пассивируемости металлов. В тех случаях, когда органические кислоты способны образовывать комплексные соединения с продуктами коррозии, ингибирующие свойства зависят от прочности этих комплексов и их адсорбируемости на поверхности металла.
1.3 Растворение и пассивация железа в щелочных растворах
В работе Б.Н.Кабанова и А.И.Лейкиса [40] показывается , что процесс анодного окисления железа в щелочной среде Fe→Fe(OH)2 идет при промежуточное соединении HFeO-2. Этот процесс не может идти бесконечно долго и заканчивается вследствие пассивации железа. В настоящей работе изучался механизм процесса Fe→Fe(OH)2 ,так и природа пассивации железа по отношению к этому процессу изучается зависимость перенапряжения и выхода процесса Fe→Fe(OH)2* ,т.е. то количество электричества, которое расходуется на процесс до момента превращения его вследствие пассивации
активности электрода по отношению к данному процессу, оптимальной концентрации щелочи и плотности тока, а также оптимальное присутствие индифферентного иона SO2-4. В работе показывается, что выход процесса Fe→Fe(OH)2 при концентрациях от 0,05 до 3,5н возрастает линейно с увеличением концентрации щелочи, а также возрастает линейно с уменьшением плотности тока. Перенапряжение анодного электрохимического процесса ηА почти не зависит от концентрации щелочи,а также и от присутствия индифферентного иона и увеличение линейно lgi. Процесс Fe→Fe(OH)2 состоит из неравновесного перехода железа в HFeO-2 с по-следующем выпадением из раствора рыхлого пористого осадка Fe(OH)2,слабо связанного с металлом.
Различие скорости растворения в кислотах и достаточно концентрированных щелочах, а также пассивация, заставляет предположить, что в щелочах основную роль играет реакция железа с гидроксимными ионами, которая облегчена большой их концентрацией в растворе. Можно принять, что электрохимическая реакция гидроксида с железом является промежуточной стадией растворения железа в щелочах, определяющей скорость процесса. Присутствие гидроксильных ионов способствует, с одной стороны, ускорению процесса растворения, а с другой - пассивации железа. Таким образом ОН- в анодном процессе играет двойную роль. Продуктом анодного растворения являться некоторый электрохимический активный поверхностный окисел, который далее превращается в HFeO-2. На поверхности железа при определенном потенциале имеется активный адсорбционный слой, очевидно, содержащий кислород. По-видимому, это соединение и является промежуто-ным при анодном растворении железа. Некоторые подобные воззрения высказывал Эшлер[41]. Он указывает, что платина растворяется не путем прямого перехода в гидратированный ион, а посредством образования на поверхности платины комплекса с хлором и с последующим переходом комплекса в раствор. Кислород играет туже роль при растворении железа, что и Сl2 при растворении платины.
Указывается, что анодное растворение железа идет быстрее чем образование пассивирующего слоя, поэтому пассивирующий окисел должен постоянно удаляться с поверхности вместе с растворяющимся слоем железа. Показывается, что при повышении потенциала, происходит в результате увеличения плотности тока или уменьшением концентрации щелочи, выход процесса уменьшается, следовательно, с повышением потенциала процесс пассивации ускоряется больше, чем процесс растворения. Это может быть в случае, если на элементарный процесс, ведущий к пассивации, затрачивается больше электронов, чем на элементарный процесс, ведущий к растворению металла. Это можно ожидать, если валентность железа в пассивированном окисле выше двух.