Смекни!
smekni.com

Разработка энергосберегающей схемы разделения трехкомпонентной азеотропной смеси бензолциклогексан-гексан (стр. 9 из 13)

4.2. Синтез технологических схем экстрактивной ректификации в комплексах простых и сложных колонн.

Азеотропным смесям присущи термодинамико-топологические ограничения на выделение конечных фракций заданного состава. Основой для преодоления ограничений служит принцип перераспределения полей концентраций между областями разделения [23–25]. Этот принцип может быть реализован с использованием однородных и неоднородных (с включением экстракции, адсорбции, абсорбции, химических и др. методов разделения) разделительных комплексов. В первом случае процесс ректификации может быть организован так, что на одном из этапов осуществляется выделение азеотропной фракции, которая затем подвергается разделению с использованием специальных методов. Если это фракция двух и более компонентов, то можно использовать экстрактивную ректификацию или разделение азеотропного состава под разными давлениями. Если фракция содержит более двух компонентов, появляется возможность применить для разделения методы, использующие кривизну разделяющего многообразия [25, 26]. В работах [24, 27] предложен общий подход к синтезу схем ректификации многокомпонентных неидеальных (включая азеотропные) смесей, основанный на понятии области ректификации. Авторами [28–30] предложены некоторые подходы к синтезу технологических схем ректификации многокомпонентных смесей, содержащих один бинарный азеотроп. При этом используется метод разделения азеотропной смеси под разными давлениями.

Наиболее часто на практике для преодоления термодинамико-топологических ограничений на выделение конечных фракций заданного состава используют метод экстрактивной ректификации. Он играет важную роль при разделении сложных азеотропных смесей. Традиционные схемы экстрактивной ректификации обладают значительной энергоемкостью. Поэтому разработка и применение оптимальных энергосберегающих технологий является актуальной задачей. Ее решение включает в себя несколько этапов:

1. Структурная оптимизация технологической схемы.

2. Оптимизация рабочих параметров ректификационных колонн.

3. Конструкционная оптимизация элементов технологической схемы.

Поскольку процесс ректификации является необратимым, то его термодинамическая эффективность зависит от пути. В качестве таковых можно рассматривать наборы технологических схем или траектории ректификации. Подходы к синтезу технологических схем экстрактивной ректификации в настоящее время разработаны явно недостаточно. Этому вопросу посвящены только отдельные работы. Например, в [31] предложен ряд комплексов с различной структурой, обеспечивающих разделение многокомпонентных азеотропных смесей. Авторами [32] предложен ряд технологических решений по ректификации смеси этанол – вода. Однако в ряде случаев в работе не учтены термодинамико–топологические ограничения на составы продуктов и предлагаемые решения неработоспособны. Таким образом, в настоящее время практически за пределами рассмотрения остается вопрос структурной оптимизации процесса экстрактивной ректификации. Решение этой проблемы целесообразно начать с разработки общих алгоритмов синтеза технологических схем.

К настоящему времени сложилась классификация схем экстрактивной ректификации. Все возможные варианты разделения можно разбить на две большие группы [31]. К первой группе относятся схемы, в которых уже на первом этапе разделения применяется экстрактивный агент и, соответственно, снимаются термодинамико–топологические ограничения на составы продуктовых фракций. Вторая группа характеризуется предварительным фракционированием исходной многокомпонентной смеси вплоть до выделения фракции азеотропообразующих компонентов. Затем эту фракцию разделяют экстрактивной ректификацией.

В целом, эти два класса схем охватывают все возможные варианты разделения. Схемы из первого класса для ректификации смесей с низкой размерностью концентрационного пространства можно использовать как элементы разделения смесей во второй группе схем для смесей более высокой размерности.

На первом этапе рассмотрен алгоритм синтеза схем первого класса. Поскольку введение экстрактивного агента снимает термодинамико–топологические ограничения на составы продуктовых потоков, то в качестве прообразов для синтеза использованы наборы схем ректификации зеотропных смесей из простых двухсекционных колонн. Принято, что разделению подвергается (n+1)–компонентная смесь, состоящая из n–компонентной исходной азеотропной смеси и экстрактивного агента. Предположено, что экстрактивный агент является самым тяжелолетучим компонентом в смеси.

На рис. 10 представлены схемы ректификации для трех– и четырехкомпонентных зеотропных смесей.


Рис. 10. Схемы разделения (а, б) – трех- и (в-ж) – четырехкомпонентной зеотропной смеси. А, В, С – компоненты смеси, S – тяжелокипящий агент, F – питание АВS для схем (а, б) и АВСS – для остальных.

Для последующего анализа схемы представлены в виде ориентированных графов с вершинами – колоннами и фракциями, ребрами – потоковыми связями между ними (рис. 10). Вершины – фракции помечены соответствующими буквами. Так, например, схема рис. 10в будет иметь вид, представленный на рис. 11.

Рис.11. Представление схемы ректификации в виде орграфа L.

– вершины–колонны;
– вершины-фракции

Рис. 12. Граф М, полученный расщеплением вершины у графа L

Представленная на рис. 11 структура отображает последовательность разделения. Следующим этапом в синтезе является расщепление потока F (n+1)-компонентной смеси на два индивидуальных потока – n-компонентную смесь Fn и экстрактивный агент S. Формально, если базироваться на структуре графа L рис.11, получается граф М на рис. 12.

Данная структура уже почти в полной мере отображает схему экстрактивной ректификации. Требуется только применить цикл по экстрактивному агенту S, отождествив (стянув в одну) две вершины – фракции с индексом S. Получен граф U рис. 13.

Рис. 13. Граф U, полученный отождествлением одноименных вершин – фракций графа М.

В зависимости от структуры паро-жидкостного равновесия из вершины S может исходить не единственное ребро (экстрактивный агент может понадобиться и для разделения смеси во второй колонне комплекса) (рис. 13б).

При этом мы допускается, что имеется такой экстрактивный агент S, который позволит обеспечить разделение всей n-компонентной смеси на чистые компоненты.

Поскольку комплекс экстрактивной ректификации имеет замкнутый (без учета потерь) цикл по экстрактивному агенту, то одним из условий работоспособности синтезированных по предложенному алгоритму схем будет наличие в орграфе цикла. Под этим термином подразумевается возможность обхода ряда вершин графа с возвращением в исходную вершину с учетом направленности ребер. При этом цикл должен иметь в своем составе, по крайней мере, две вершины, эксплицирующих колонны. Вторым условием работоспособности предложенных схем является ввод экстрактивного агента в колонну разделения азеотропной пары компонентов.

Далее представлен наиболее простой пример – разделение бинарной азеотропной смеси АВ.

Рис. 14 Графы схем экстрактивной ректификации азеотропной смеси АВ

Для рассматриваемого типа схем экстрактивный агент должен подаваться в первую колонну разделения, поэтому на рис. 14 приведены только эти варианты.

Видно, что условию работоспособности отвечает только граф на рис. 14а. Он полностью структурно соответствует классической схеме экстрактивной ректификации бинарной азеотропной смеси с тяжелолетучим разделяющим агентом.

Общий подход к синтезу технологических схем разделения для четырехкомпонентной азеотропной смеси можно представить в следующем виде:

1. Синтез схемы ректификации четырехкомпонентной зеотропной смеси (рис. 10 в-ж) и представление их в форме орграфов типа L(рис. 15 а-д).

2. Выделение в существующем наборе схем (рис. 15 а-д) вершин, в которые необходимо направить ребро из S (экстрактивная колонна в схеме). Для выбранного типа схем экстрактивной ректификации это вершины – колонны, первые по ходу разделения. Выделяются темным кружком.

3. Расщепление вершины F на Fn и S, удаление вершины S, инциндентную исходящему ребру. Эта операция эквивалентна замене вершины F на Fn.

4. Связывание вершины S с помеченной вершиной-колонной ориентированным исходящим из S ребром и проверка полученной структуры (рис. 15 л-о) на работоспособность исходя из портрета паро-жидкостного равновесия в соответствии с классификацией Л.А. Серафимова [33].

5.

Рис. 15. Синтез графов – схем экстрактивной ректификации

Доказано, что применение сложных колонн при экстрактивной ректификации (ЭР) [35, 36] приводит к повышению термодинамической эффективности процесса и снижению энергозатрат на разделение [37–39]. Решение задачи синтеза схем ректификации зеотропных смесей с частично связанными тепловыми и материальными потоками предложено в работе [40]. Для определения работоспособных вариантов ЭР использовался алгоритм [40], дополненный его запретом на стягивание по ориентированному ребру. Для реализации алгоритма [40] потребовалось представить технологические схемы в виде графов. Однако в этом случае вершины соответствуют сечениям, разделяющим либо ограничивающим секции колонн, а ребра — потокам пара и жидкости. Пара разнонаправленных ребер, инцидентных одной паре вершин, отображает секцию колонны (рис. 16).