Смекни!
smekni.com

Основы радиохимии и радиоэкологии (стр. 10 из 63)

Согласно правилу смещения Фаянса и Соддииa-распад всегда приводит к возникновению изотопа элемента, смещенного на две клетки левее от исходного элемента в периодической системе и имеющего на четыре единицы меньшее массовое число.

Образуется Возникшее при альфа – распаде ядра находятся в возбужденном состоянии и постепенно переходят в основное состояние, испуская γ – кванты.

А ®
В +
α + γ + DЕ ( 4.1)

Ро ®
Рb +
Не.

Часть энергии при a-распаде может быть выделена в виде фотона:

U ®
Th +
Не + g.

Как правило, испускаемый γ – квант в реакции не записывается. Энергетический баланс этой реакции можно записать в следующем виде

Еобщ = Еα + Еγ + Еотд

Схематично a-распад можно записать

или (А,Z) ® (А - 4, Z - 2) +

a.

Если обозначить массу исходного (материнского) ядра

М, массу дочернего
М и массу a-частицы ma, то энергетическое условие самопроизвольного a-распада может быть записано как:

МС2>
МС2 + maС2, (4. 2)

Таким образом, a-распад происходит тогда, когда масса исходного ядра превышает массу конечного, более чем на массу одной a-частицы или разница в дефектах масс материнского и дочернего ядер больше дефекта массы альфа- частицы:

Δ m( A,Z)- Δ m (A-4, Z-2)> Δ m (

α) (4.3)

Нетрудно подсчитать, что эти условия одновременно выполнимы для элементов периодической системы, начиная с А>120.

По современным представлениям альфа- частиц в ядре постоянно не существует, Они образуются при встрече двух протонов и двух нейтронов, т.е. при избытке протонов и нейтронов. В то же время, чтобы альфа- частица могла покинуть ядро, ей необходимо преодолеть ядерные силы, потенциальный барьер, величина которого 25 – 30 Мэв. На самом деле энергия альфа-частиц покидающих ядро лежит в пределах 4-9 Мэв. Это несоответствие объясняется квантовой механикой, согласно которой, альфа - частицам присущи волновые свойства.

Важное свойство a - распада заключается в том, что периоды полураспада исходного ядра меняются в громадных пределах, а энергия всех измеряемых частиц лежит в сравнительно узком интервале приблизительно от 4 до 9 Мэв.

Установлено также, что чем меньше период полураспада, тем больше энергия a-частиц.

Гейгер и Неттол вывели эмпирическое уравнение, описывающее с хорошей точностью большинство случаев a-распада:

lgT1/2 = A - BEa ( 4. 4)

4.2 Бета - распад

Бета распадом называется процесс самопроизвольного превращения нейтрального ядра в ядро - изобар с зарядом отличным на DZ = ±1. Скорость, испускаемых при бета-распаде b - частиц близка к скорости света.

Как и a-излучение, b- излучение отклоняется в магнитном и электрическом полях, но в противоположную сторону и на большее расстояние. Это указывает на то, что бета-излучение является потоком отрицательно заряженных частиц малой массы. По отношению e/m Резерфорд идентифицировал бета-частицы как обычные электроны.

Согласно правилу смещения Фаянса-Содди b

- распад приводит к возникновению изотопа элемента, смещенного на одну клетку правее от исходного элемента без изменения массового числа.

Для того, чтобы отличать электроны, возникающие при ядерных превращениях, их стали называть бета-частицами. Несмотря на то, что обычно говорится об испускании электронов ядрами, атомные ядра в чистом виде не содержат электроны. Бета – частица образуется в самом акте ядерного превращения.

Известны три вида b-распада: электронныйb

-распад, позитронный b+-распад и электронный К-захват электрона ядром с одной из ближайших к ядру оболочек.

При бета-распаде массовые числа ядер не изменяются, а изменяется лишь заряд, на единицу больше в случае b--распад и на единицу меньше в случае b+-распада и К-захвата. Согласно правилу сдвига Фаянса-Содди, для этих типов распада можно записать:

Все три вида b-распада сводятся к следующим видам взаимного превращения нуклонов в ядре.

b--распад – no ®р+ + e- +

;
Р ®
S + e- +
; (b
-распад);

b+-распад – р ® no + е+ +

;
С ®
В + е+ +
(b+-распад);

К-захват – р+ + e- ® n +

;
Cs + e-®
Xe +
( К- захват)

Таким образом, электроны и позитроны не находятся в ядре, а возникают в момент перехода одного нуклона в другой. Как видно из схем b- превращений, характерной чертой всех видов превращений является испускание нейтрино

или антинейтрино
.

Впервые понятие о нейтрино ввел В. Паули в 1930 году для объяснения «потерянной» части энергии при радиоактивном распаде с испусканием электрона. Суммарная энергия частиц и гамма квантов, оказывалась несколько меньшей энергии частиц, вступающих во взаимодействие. Паули предположил, что недостающая часть энергии улетает с частицей, которую он назвал «нейтрино». Нейтрино – незаряженная элементарная частица обладает массой покоя, близкой к нулю. Нейтрино обладает исключительной проникающей способностью. Его крайне трудно обнаружить, так как прохождение нейтрино через материальную среду практически не сопровождается каким-либо эффектом. Такими же свойствами обладает и антинейтрино.

Как видно из схем превращений при электронном бета-распаде один из нейтронов превращается в протон, и материнское ядро испускает электрон и антинейтрино. Схематически этот процесс представляется таким образом:

+

Электронный бета-распад может сопровождаться также гамма- излучением. Это происходит в том случае, когда в процессе распада, образуется ядро, находящееся не в основном, а в возбужденном состоянии. Примером такого распада служит превращение стронция в иттрий:

+
+ g

Обратный процесс превращения протона в нейтрон в свободном состоянии невозможен, поскольку масса нейтрона больше массы протона. Однако ядра, расположенные в координатах N и Z ниже линии стабильности, в результате перегруппировки нуклонов, могут перейти из менее стабильного состояния в более стабильное состояние путем замены одного протона на нейтрон. При этом протон теряет свой заряд, превратившись в нейтрон и позитрон (е+), частицу несущую положительный заряд, но обладающую массой электрона. Так как при испускании позитрона происходит захват электрона с электронной оболочки, обеспечивающий сохранение электронейтральности атома, позитронный распад может протекать в случае, если разность энергий в конечном и исходном состояниях превышает 1,02 МэВ, то есть больше массы покоя двух электронов. При позитронном распаде позитрон немедленно покидает ядро, и после замедления его масса аннигилирует вместе с массой электрона. О наличии позитронного распада свидетельствует регистрация двух гамма - квантов с энергиями 0,51 МэВ. Этот процесс идет с поглощением энергии, так как масса нейтрона больше массы протона.