Смекни!
smekni.com

Основы радиохимии и радиоэкологии (стр. 20 из 63)

6.3.1 ВЫХОДЫ ПРОДУКТОВ РАДИОЛИЗА ВОДЫ

Максимально возможный выход разложения воды можно оценить из величин среднего потенциала ионизации воды (W), нижнего потенциала ионизации воды (I)? И пороговой энергии электронного возбуждения воды ( Е):

W=24,6 эВ I= 10,06 эВ E= 7,4 эВ

G0 Н

О =

,

находим, что максимально возможный выход разложения жидкой воды равен 12 молекул на 100 эВ.

6.4 ДЕЙСТВИЕ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА ОРГАНИЧЕСКИЕ ВЕЩЕСТВА

Механизм радиационно-химических реакций с органическими соединениями несравненно более сложен, чем для простых реакций в газовой фазе или реакций вводном растворе. Вследствие разнообразия классов органических соединений этот механизм, очевидно, не является единым.

При радиолизе органических соединений происходит разрыв связей С– С, С– Н и связей углерода с функциональными группами, в результате чего появляются радикалы нескольких типов, при взаимодействии которых образуются соединения как с меньшим, так и с большим числом углеродных атомов, чем в исходной молекуле.

Кроме того, происходит дегидрирование с образованием водорода и соединений с двойной связью. Число образующихся при радиолизе органических веществ, как правило, велико. Например, при радиолизе пентана образуется более 17 соединений.

По своей радиационной устойчивости углеводороды располагаются в следующий ряд: ароматические> насыщенные> ненасыщенные. Наибольшая устойчивость к радиоактивному излучению ароматических углеводородов, вероятно, связана с тем, что π–связь в кольце способна рассеивать энергию возбуждения через высвечивание или распределение энергии по всей молекуле.

При радиолизе смеси ароматических соединений или ароматических соединений с неароматическими наблюдается явление передачи энергии от молекул одного соединения к молекулам другого. Это явление вместе c явлением тушения люминисценции, возникающей при облучении некоторых органических соединений, указывает на роль возбужденных молекул в процессах радиолиза.

Основным газообразным продуктом радиолиза углеводородов, является водород,

Имеются два пути образования водорода:

Радикальный:

RH—WW

+ R

RH+

R +H2;

Общий выход радикалов не зависит от строения предельного углеводорода и равен 6-8 радикалов на 100 эВ.

2. Молекулярный:

RH—WW

H2 +ненасыщенные органические соединения.

Второй обязательный продукт радиолиза углеводородов- метан, выход которого убывает с удлинением цепи углеводорода. Он образуется из концевых групп:

+ RН
СН4 +

Органические соединения с функциональными группами в большинстве случаев менее радиационно-устойчивы, чем соответствующие углеводороды.

6.5 РАДИОЛИЗ ВОДНЫХ РАСТВОРОВ ДНК ( ДЕЗОКСИРИБОНУКЛЕИНОВАЯ КИСЛОТА)

Как известно, наиболее тяжелыми последствиями для судьбы клетки является повреждение молекулы ДНК. Главная цепь ДНК состоит из чередующихся дезоксирибозных и фосфатных звеньев. В свою очередь звенья дезоксирибозы связаны с аденином, гнуанином, тимином и цитозином (азотистые основания ДНК).

Радиационно-химические превращения оснований ДНК исследованы в их водных растворах.

Эти реакции характеризуются большими значениями констант скоростей, особенно в случае взаимодействия с гидратированным электроном и гидроксильным радикалом.

При радиолизе водных растворов ДНК протекают два главных процесса– деполимеризация и превращение азотистых оснований биополимера. При деполимеризации происходит разрушение дезоксирибозного фрагмента ДНК. Деполимеризация ДНК проявляется в уменьшении молекулярной массы биополимера и вязкости растворов. Одновременно с уменьшением молекулярной массы происходит разрыв водородных связей. Этот процесс является причиной денатурации ДНК.

В присутствии кислорода появляются гидроперекиси.

Все процессы, происходящие при облучении ДНК, обусловлены в основном взаимодействием ДНК с е

и
.
Радикалы вступают в окислительно-восстановительные реакции с фрагментами ДНК.

6.6 РАДИОЛИЗ ВОДНЫХ РАСТВОРОВ БЕЛКОВ

Белковые молекулы состоят из длинных полипептидных цепей, состоящих из остатков α–аминокислот. Радиационно-химические превращения белковых молекул определяются, прежде всего, действием радиации на аминокислоты.

Основные процессы, протекающие при облучении водных растворов белков – деструкция полипептидной связи с образованием низкомолекулярных продуктов, возникновение сшивок, реакции радикальных продуктов радиолиза воды (

,
,
)
с боковыми ответвлениями аминокислотных остатков полипептидной цепи, инактивация ферментов,денатурация.

Все эти процессы, как и в случае с ДНК обусловлены в значительной степени взаимодействием белков с е

и
.

Все очень схематично представленные превращения биологически важных веществ не описывают всей сложности процессов, происходящих в живой клетке при ее облучении. Действительно, доза в 2, 5 –4 Гр вызывает смерть 50% облученных в течение месяца после радиационного воздействия на весь организм. В то же время химические превращения в обычных системах при таких дозах ничтожны. Очевидно, кроме косвенного действия продуктов радиолиза воды (ее в живой клетке 85%) происходит прямое действие излучения на биополимеры. И даже с учетом этого эффекта биологическое действие излучения невозможно объяснить только химическими превращениями, связанными с ионизацией, возбуждением и реакциями с участием свободных радикалов.

Тем не менее, радиационно-химический подход к решению проблем радиобиологии дает возможность установить в молекулах биополимеров места наиболее чувствительные к действию ионизирующего излучения, а также наметить пути управления процессами радиационной защиты.

6.7 РАДИАЦИОННАЯ СТОЙКОСТЬ МАТЕРИАЛОВ

Главное, на что принято обращать внимание при рассмотрении поведения материалов в радиационных полях, - это на их способность противостоять воздействию излучений и сохранять исходные свойства, что определяют термином "радиационная стойкость". По своей радиационной стойкости вещества и материалы значительно отличаются. Это обусловлено, прежде всего различиями их физико-химических характеристик: элементного состава, фазового состояния, химического и электронного состояния молекул, дефектности структуры. Радиационная стойкость существенно зависит от радиационной обстановки, вида излучений, мощности дозы, температуры окружающей среды, условий эксплуатации. В качестве примера приведены данные о значениях доз, которые значительно изменяют свойства некоторых материалов.

6.7.1 РАДИАЦИОННАЯ СТОЙКОСТЬ НЕКОТОРЫХ МАТЕРИАЛОВ ЯДЕРНОЙ ЭНЕРГЕТИКИ

Приведем несколько примеров радиационной стойкости материалов, наиболее употребляемых в ядерной энергетике. Вода и водные растворы широко используются в активной зоне ядерных реакторов, бассейнах-хранилищах отработанного ядерного топлива, при переработке отработанного ядерного топлива. При радиолизе воды образуются такие продукты, как водород, кислород и перекись водорода. Образование водорода создает проблему предотвращения возможного взрыва смеси водорода и кислорода. В водной среде в условиях действия радиации ускоряются процессы коррозии конструкционных материалов, что может повлиять на ядерную и радиационную безопасность работы атомных электростанций.

В оборудовании атомных электростанций полимерные материалы широко используют в качестве изоляционных и защитных материалов проводов и кабелей, а резины - в качестве уплотнителей. При облучении в полимерах происходят сшивание (образование поперечных межмолекулярных связей), деструкция (разрывы связей в главной цепи и боковых группах), изменение химической ненасыщенности (исчезновение и образование двойных связей различного типа), окисление, газовыделение. При сшивании линейный полимер превращается в пространственный и его молекулярная масса возрастает. При деструкции молекулярная масса полимера уменьшается. Обычно сшивание и деструкция протекают одновременно. Соотношение скоростей этих процессов сильно зависит от химической структуры полимера, его физического строения, условий облучения. Полимеры разделяются на преимущественно сшивающиеся и преимущественно деструктирующие. Радиационно-химические выходы сшивания лежат в интервале 0,02-3, деструкции 0,01-10. Предельные дозы для полимерных электроизоляционных материалов лежат в широких пределах от 0,02-0,2 (для некоторых фторсодержащих полимеров) до 10 (радиационно-сшитый полиэтилен) и 100 МГр (полиимиды).