Смекни!
smekni.com

Основы радиохимии и радиоэкологии (стр. 40 из 63)

С увеличением атомного номера и массового числа синтезируемого элемента резко уменьшается его выход. Самый тяжелый элемент, который может быть получен реакторным методом– Fm. Однако накопить этот изотоп в ядерном реакторе невозможно, из-за того , что время, необходимое для присоединения нейтрона по реакции

257Fm (n,g ) 258Fm

значительно больше, чем период спонтанного деления образующегося продукта 258Fm ( Т ½ =3.8∙10-4 с).

Вторая группа методов получения трансурановых элементов состоит в облучении урана и более тяжелых элементов заряженными частицами с использованием ускорителей различных типов (ускорительный метод). Использование в качестве бомбардирующих ускоренных ионов дейтерия и гелия позволяет получить элементы вплоть до менделевия:

;
;
Es (a,n)
Md

По своему химическому поведению актиноиды занимают промежуточное положение между элементами f - и d- серий. Этим объясняется большое многообразие валентных состояний у актиноидов по сравнению с соответствующими лантаноидами.

Основная степень окисления лантаноидов +3. Актиноиды благодаря меньшей энергии связи электронов на 5 f-уровне по сравнению с 4 f –электронами у лантаноидов и наличию у первых актиноидного ряда 6 d-электронов проявляют ряд степеней окисления. Степень окисления +3 не обнаружена у тория и не характерна для протактиния, мало устойчива для урана и нептуния, легко переходит в +4 для плутония. Начиная с америция, степнь окисления +3 является наиболее устойчивой. У калифорния и следующих за ним актиноидов появляется степень окисления +2, устойчивость которой растет от кюрия до менделевия. Для последнего она является наиболее устойчивой степенью окисления.

В таблице приведены степени окисления актиноидов в растворе

Таблица

Элемент
Ac 89 3 Cm 96 3,4
Th 90 (3),4 Bk 97 3,4
Pa 91 4, 5 Cf 98 2,3,4
U 92 3, 4, 5, 6 Es 99 2, 3
Np 93 3, 4, 5, 6, 7 Fm 100 2, 3
Pu 94 3, 4, 5, 6 ,7 Md 101 1, 2, 3
Am 95 2, 3, (4), 5, 6 ,7 No 102 2, 3
Lr 103 3

У лантаноидов в образовании связи участвуют d- и s -электроны. Переход с уровня 4f на 5d у них затруднен, требует значительной энергии, поэтому у лантаноидов степени окисления выше +3 осуществляются с трудом и лишь для некоторых лантаноидов. Переходы актиноидов из состояния окисления +3 и +4 в состояние окисления +5 и +6 затруднены по сравнению с переходами +3 в +4 и +5 в +6 вследствие изменения структуры иона, например,

Me4+ + 2H2O

MeO
+ 4H++ 2e-

Актиноиды – активные металлы, легко вступающие в реакции практически со всеми химическими элементами с образованием соответствующих соединений. Их химическая активность растет с увеличением атомного номера.

В растворе актиноиды образуют гидратированные ионы вида:

Ме2+[Cf– No]

Ме3+[Ac –Lr]

Ме4+(Th, U– Cf; Am, Cm и Cf только в виде комплексных ионов)

МеО

(U – Am)

МеО

(U – Am)

МеО

или (МеО5· nH2O) 3
(Np, Pu, Am)

Ионы актиноидных элементов имеют небольшой размер и значительный заряд.

Ионные радиусы актиноидов, подобно лантаноидам, падают с ростом порядкового номера (табл.). Вследствие этого в водных растворах они гидролизованы. Не гидролизованные трех- и четырехзарядные ионы актиноидов существуют только в достаточно кислых растворах в отсутствие лигандов, имеющих большое сродство к катионам, практически в среде HClO4.

Они гидратированы и имеют состав Me(H2O)

и Me(H2O)
. В других кислотах начинается комплексообразование. Гидролиз протекает по схеме

Me (H2O)

+ m H2O
Me(OH)m(H2O)

Аналогично протекает и комплексообразование

Me (H2O)

+ mАу-

Таблица Ионные радиусы актиноидов

Ион Радиус, нм Ион Радиус, нм Ион Радиус,нм
Ас3+ 1.071 Bk3+ 0.975 - -
Th3+ 1.051 Cf3+ 0.962 Th4+ 0.984
Pa3+ 1.034 Es3+ 0.953 Pa4+ 0.944
U3+ 1.022 Fm3+ 0.943 U4+ 0.929
Np3+ 1.011 Md3+ 0.934 Np4+ 0.913
Pu3+ 1.001 No3+ 0.928 Pu4+ 0.896
Am3+ 0.993 Lr3+ 0.921 Am4+ 0.888
Cm3+ 0.985 Cm4+ 0.886
Bk4+ 0.870

10.8.2 АКТИНИЙ (89Ас)

89 Ac227AктинийActinium [Rn]7s26d1

1899 году сотрудник Кюри Дебьерн в редкоземельной фракции отходов от переработки урановой смоляной руды обнаружил новое радиоактивное вещество. При химико-аналитическом разделении это радиоактивное вещество осаждалось аммиаком вместе с редкоземельными элементами и торием. Радиоактивность была приписана новому радиоактивному элементу, который был назван актинием ( излучающий).

Есть лишь одна причина, по которой элемент № 89 – актиний - интересует сегодня многих. Этот элемент, подобно лантану, оказался родоначальником большого семейства элементов - актиноидов. В это семейство входят все три кита ядерной энергетики – уран, плутоний и торий.

И так, согласно актиноидной теории Г. Сиборга, актиний – первый член семейства актиноидных элементов и, следовательно, налог лантана. Электронная конфигурация актиния в основном состоянии предполагается следующей: 6s6p6 6d1 7s2.

В настоящее время известно 24 изотопа актиния, три из них встречаются в природе(

Ac ,
Ac
Ac). Остальные изотопы получены искусственным путем.

Радиоактивные свойства некоторых изотопов актиния:

Изотоп актиния Реакция получения Тип распада Период полураспада
221Ac 232Th(d,9n)225Pa(α)→221Ac α <1 сек.
222Ac 232Th(d,8n)226Pa(α)→222Ac α 4,2 сек.
223Ac 232Th(d,7n)227Pa(α)→223Ac α 2,2 мин.
224Ac 232Th(d,6n)228Pa(α)→224Ac α 2,9 час.
225Ac 232Th(n,γ)233Th(β-)→233Pa(β-) 233U(α)→229Th(α)→225Ra(β-)→225Ac α 10 сут.
226Ac 226Ra(d,2n)226Ac α или β- или электронный захват 29 час.
227Ac 235U(α)→231Th(β-)→231Pa(α)→227Ac α и β- 21,7 лет
228Ac 232Th(α)→228Ra(β-)→228Ac β- 6,13 час.
229Ac 228Ra(n,γ)229Ra(β-)→229Ac β- 66 мин.
230Ac 232Th(d,α)230Ac β- 80 сек.
231Ac 232Th(γ,p)231Ac β- 7,5 мин.
232Ac 232Th(n,p)232Ac β- 35 сек.

Главный и долгоживущий изотоп актиния -

Ac (период полураспада 22 года) является дочерним продуктом 235U.

В урановых рудах актиний содержится в микроконцентрациях. В равновесии с 1 природного урана находится ~ 10-10 г

Ac. Актиний может быть выделен из урановых и ториевых руд путем осуществления кислотного разложения руды с последующим разделением и выделением продуктов распада урана и тория и отделения актиния от примесей с лантаноидами. От лантана актиний может быть отделен хроматографически на катионите в аммонийной форме или методом электрофореза.