В настоящее время известно 13 изотопов радия, из них три являются членами естественных радиоактивных семейств. Наиболее долгоживущим из природных изотопов радия является изотоп 226Ra с периодом полураспада1622 года. 226Ra является a-g- излучателем и содержится во всех рудах урана. В 1 т урановой смоляной руды содержится около 400 мг 226Ra. В верхнем слое Земной коры толщиной 1,6 км содержится 1,8×107 т 226Ra. Довольно много радия в некоторых природных водах – до 10-8г/л. В мировом океане содержится около 2·104 т радия.
Свежеполученный металлический радий - белый блестящий металл, темнеющий на воздухе с Ткип.=1140 С0и Тпл.=960 С0. Впервые металлический радий был получен М. Кюри и А. Дебьерном выделением на ртутном катоде при электролизе раствора RaCl2 с последующим разложением амальгамы радия в токе водорода при нагревании до 700 С0.
Радий представитель щелочно-земельных металлов и является самым тяжелым металлом главной подгруппы 11 группы периодической системы. Единственной степенью окисления радия является +2. По своим химическим свойствам радий похож на барий, но химически более активен. Он энергично разлагает воду, давая гидроокись Ra(OH)2, более растворимую, чем Ва(ОН)2.
Ra +2Н2О= Ra(OH)2+ Н2
Наиболее важными соединениями радия являются его галогениды: хлорид и бромид. Все соли радия и бария изоморфны. Все свежеприготовленные соли радия имеют белый цвет с характерным голубым свечением в темноте. Химия радия в водных растворах исследована с использованием микроколичеств этого элемента из-за его большой массовой радиоактивности ( радиоактивность 1 г радия составляет 3,7×1010 Бк). Радий в растворах находится в виде ионов Ra2+. В ряду щелочно – земельных металлов радий проявляет наименьшую склонность к комплексообразованию и гидролизу.
Радий обладает большой склонностью к сорбции из растворов на поверхности стеклянной посуды, фильтровальной бумаги, что затрудняет определение его физико-химических констант (например, растворимость солей радия). Радий образует комплексы с лимонной, молочной и винной кислотами.
Основная проблема при выделении радия из урановых руд состоит в отделении его от больших количеств урана и продуктов распада радия. Кроме методов сокристаллизации с изоморфными солями бария и свинца, для выделения радия используется хроматографические и экстракционные методы. Перспективным для выделения радия является использование неорганических неспецифических сорбентов, таких как Al2O3.
Радий сыграл огромную роль в исследовании строения атомного ядра, явления радиоактивности и становлении радиохимии и ядерной физики. Можно утверждать, что если бы 100 лет назад не был бы открыт элемент радий, то вряд ли прошлый век называли бы атомным. За открытие явления радиоактивности и радия Марии Склодовской - Кюри была дважды присуждена Нобелевская премия ( первый раз по физике-1903 г., второй - по химии-1911 г.).
Основные области применения радия обусловлены его g-излучением в методах неразрушающего контроля для определения дефектов литья, в толщиномерах, при разведке месторождений урана. Альфа излучение радия позволяет использовать его для производства светящихся красок и для снятия статических зарядов. В смеси с бериллием радий используют для изготовления нейтронных источников. В медицине радий используют как источник радона. Радий обладает большой подвижностью в природе и довольно сильно может выщелачиваться из горных пород. Поэтому большинство урановых минералов теряет значительную часть радия (иногда эти потери составляют до 85%), который легко попадает в природные воды.
11.8 АКТИНИЙ ( 89Ас) И АКТИНОИДЫ
1899 году сотрудник Кюри Дебьерн в отходах от переработки урановых руд обнаружил новое радиоактивное вещество. При химико-аналитическом разделении это радиоактивное вещество осаждалось аммиаком вместе с редкоземельными элементами и торием. Радиоактивность была приписана новому радиоактивному элементу, который был назван актинием( излучающий). В настоящее время известно 24 изотопа актиния, три из них встречаются в природе(
Ac , Ac Ac). Остальные изотопы получены искусственным путем.Таблица Радиоактивные свойства некоторых изотопов актиния:
Изотоп актиния | Реакция получения | Тип распада | Период полураспада |
221Ac | 232Th(d,9n)225Pa(α)→221Ac | α | <1 сек. |
222Ac | 232Th(d,8n)226Pa(α)→222Ac | α | 4,2 сек. |
223Ac | 232Th(d,7n)227Pa(α)→223Ac | α | 2,2 мин. |
224Ac | 232Th(d,6n)228Pa(α)→224Ac | α | 2,9 час. |
225Ac | 232Th(n,γ)233Th(β-)→233Pa(β-) → 233U(α)→229Th(α)→225Ra(β-)225Ac | α | 10 сут. |
226Ac | 226Ra(d,2n)226Ac | α или β- или электронный захват | 29 час. |
227Ac | 235U(α)→231Th(β-)→231Pa(α)→227Ac Ra ( n,g) Ra → Ac | α или β-β-, α | 21,7 лет22 года |
228Ac | 232Th(α)→228Ra(β-)→228Ac | β- | 6,13 час. |
229Ac | 228Ra(n,γ)229Ra(β-)→229Ac | β- | 66 мин. |
230Ac | 232Th(d,α)230Ac | β- | 80 сек. |
231Ac | 232Th(γ,p)231Ac | β- | 7,5 мин. |
232Ac | 232Th(n,p)232Ac | β- | 35 сек. |
Есть одна причина, по которой элемент № 89 – актиний – особенно интересует сегодня многих. Этот элемент, подобно лантану, оказался родоначальником большого семейства элементов, в которое входят все три кита ядерной энергетики – уран, плутоний и торий.
Главный и долгоживущий изотоп актиния -
Ac (период полураспада 22 года) является дочерним продуктом 235U. В урановых рудах актиний содержится в микроконцентрациях.В равновесии с 1 природного урана находится ~ 10-10 г Ac. Актиний может быть выделен из урановых и ториевых руд путем осуществления кислотного разложения руды с последующим разделением и выделением продуктов распада урана и тория и отделения актиния от примесей с лантаноидами. От лантана актиний может быть отделен хроматографически на катионите в аммонийной форме. Актиний хорошо отделяется от лантана методом электрофореза. Количество получающегося актиния настолько мало, что этот элемент входит в десятку редчайших элементов.Из – за очень малого содержания актиния в рудах его предпочитают получать искусственным путем, Изотоп 227Ac получают облучением радия мощным потоком нейтронов в реакторе:
Ra ( n,g) Ra → AcИменно этим путем получены чистые препараты актиния, на которых и были определены его основные свойства. Выход, как правило, не превышает 2.15% от исходного количества радия. Количество актиния при данном способе синтеза исчисляется в граммах. От радия и дочерних продуктов распада актиний отделяют после растворения мишени в НСl довольно просто – экстракцией в раствор тиофенилкарбонила - трифторацетона в хлороформе при рН~3,6. Далее актиний осаждают в виде Ac2(С2О4)3, растворяют в соляной кислоте и плавиковой кислотой переводят в AcF3. Затем в вакууме при 12000 С полученную соль восстанавливают металлическим литием до металла. Выделение и очистка актиния от радия, тория и дочерних продуктов распада проводятся методами экстракции и ионного обмена.
Металлический актиний получают восстановлением трифторида актиния парами лития
Элементарный актиний довольно тяжелый серебристо-белый металл, который легко окисляется на воздухе с образованием пленки оксида, предохраняющей металл от дальнейшей коррозии. Актиний- элемент третьей группы периодической системы. Его ближайшим химическим аналогом является лантан. У него, как и у лантана такая же валентность (+ 3), близкиие атомные радиусы (1,87 нм у лантана и 2,03 нм у актиния), почти идентичное строение большинства соединений. Актиний подобно лантану химически активный элемент, быстро окисляющийся на воздухе. В то же время он имеет более основные свойства, чем лантан. В кислых растворах актиний присутствует в виде ионов. При рН>3 образуются коллоидные растворы. В микроконцентрациях актиний соосаждается гидроокисями иттрия, алюминия, железа.