Применение актиния
227Ac в смеси с бериллием является источником нейтронов. Ac-Be-источники характеризуются малым выходом гамма-квантов, применяются в активационном анализе при определении Mn, Si, Al в рудах.
225Ac применяется для получения 213Bi, а также для использования в радио-иммунотерапии.
227Ac может использоваться в радиоизотопных источниках энергии.
228Ac применяют в качестве радиоактивного индикатора в химических исследованиях из-за его высокоэнергетического β-излучения.
Смесь изотопов 228Ac-228Ra используют в медицине как интенсивный источник γ-излучения.
Актиний относится к числу опасных радиоактивных ядов с высокой удельной α-активностью. Хотя абсорбция актиния из пищеварительного тракта по сравнению с радием сравнительно невелика, но наиболее важной особенностью актиния является его способность прочно удерживаться в организме в поверхностных слоях костной ткани. Первоначально актиний в значительной степени накапливается в печени, причём скорость его удаления из организма много больше скорости его радиоактивного распада. Кроме того, одним из дочерних продуктов его распада является очень опасный радон, защита от которого при работе с актинием является отдельной серьёзной задачей.
Актиний сыграл огромную роль в знаменитой актиноидной теории Г. Сиборга, предложенной в 1944 г. В соответствии с этой теории элементы с порядковыми номерами 90-103 образуют 5f –семейство и по аналогии с лантаноидами размещаются в периодической системе в виде отдельной группы. По своему химическому поведению актиноиды занимают промежуточное положение между элементами f - и d- серий. Сюда входят - торий, протактиний, уран, нептуний, плутоний, америций, кюрий, берклий, калифорний, энштейний, фермий, менделеевий, нобелий, лоуренсий.
Таблица Наиболее важные изотопы актиноидов
Изотоп | Период полураспада | Изотоп | Период полураспада | Изотоп | Период полураспада |
227Ac | 22 года | 244Pu | 7,6×107 лет | 248Bk | 314 суток |
232Th | 1,39×1010 лет | 241Am | 458 лет | 251Cf | 660 лет |
231 Pa | 34300 лет | 241Am | 433 года | 254Es | 280 суток |
233U | 1,62×105 лет | 243Am | 7600 лет | 253Es | 20,47 сут |
235U | 7,13×108 лет | 242Cm | 162,5 суток | ||
238U | 4,5×109 лет | 244Cm | 19 лет | ||
235Np | 410 сут | 247Cm | ³4×107 лет | ||
237Np | 2,2×106 лет | 248Cm | 4,7×105 лет | ||
238Pu | 86,4 года | 250Cm | 2×104 лет | ||
239Pu | 24360 лет | 247Bk | 1300 лет | ||
242Pu | 3,79×105 лет |
Согласно теории всего в слое 5f может находиться 14 электронов. Следовательно,103-й элемент должен быть последним актиноидом, так как у него будут полностью застроены уровни 5f, 6s и 6p. С другой стороны, следует ожидать, что 104-й элемент будет находиться в состоянии 6d2 7s2, т.е. относиться к четвертой группе системы Менделеева, следовательно, по своим свойствам он должен быть похож на торий.
11.9 ТОРИЙ (90Th)
Элемент № 90 был открыт обычным химическим методом в 1828 году Яном Берцелиусом и назван торием в честь древнескандинавского божества Тора. Радиоактивность тория была обнаружена М. Кюри и одновременно с ней независимо немецким ученым Г. Шмидтом в 1898 году. Именно радиоактивность - основная причина нынешнего интереса к элементу № 90. Природный элемент практически представляет собой изотоп 232Th. Торий-232 является родоначальником довольно большого семейства. Период полураспада тория-232 равен 1,39·1010лет.
В 1898 году М. Кюри обнаружила, что торий обладает радиоактивностью. Именно радиоактивность- основная причина нынешнего интереса к элементу с порядковым номером 90.
В периодической системе 232Th расположен в четвертой группе. Торий - металл серебристого цвета, легко подвергается механической обработке. Он очень легко окисляется, поэтому его хранят под слоем керосина. Торий способен проявлять степени окисления +4, +3, +2, наиболее устойчивой является +4. Только одно соединение тория - его двуокись ThО2 имеет самостоятельное применение, остальные же важны лишь для науки и… для производства тория.
Основными источниками тория являются торийсодержащие минералы (монацит, ортит). Методы выделения тория предусматривают отделение его от сопутствующих редкоземельных элементов. В технологии для этой цели используется, в основном, экстракция тория ТБФ( трибутилфосфатом) после его отделения от основной массы редкоземельных элементов дробным осаждением менее растворимого сульфата тория.
Основными источниками тория являются торийсодержащие минералы (монацит, ортит). Методы выделения тория предусматривают отделение его от сопутствующих редкоземельных элементов. В технологии для этой цели используется, в основном, экстракция тория ТБФ после его отделения от основной массы редкоземельных элементов дробным осаждением менее растворимого сульфата тория. Методы соосаждения со специфическим (La, Ce) и неспецифическим Te(OH)3, BiPO4 носителями используются для получения препаратов
, применяемых в качестве радиоактивных индикаторов.Применение тория. Элементом особой важности, стратегическим металлом торий стал лишь после второй мировой войны.
Как и всякий четно-четный изотоп (четное число протонов и нейтронов), торий-232 не способен делиться тепловыми нейтронами. Но под действием тех же нейтронов с торием происходит вот что:
Th232 + n -> Th233 -> Pa233 -> U233
А U233 - отличное ядерное горючее, поддерживающее цепное деление и имеющее некоторое преимущество: при делении его ядер выделяется больше нейтронов. Каждый нейтрон, поглощенный ядром плутония-239 или урана-235, дает 2.03-2.08 новых нейтронов, а уран-233 - намного больше - 2.37.
Применение тория в качестве ядерного горючего затруднено прежде всего тем, что в побочных реакциях образуются изотопы с высокой активностью. Главный из таких загрязнителей - уран-232 - альфа- и гамма-излучатель с периодом полураспада 73.6 года. Его использованию препятствует и то обстоятельство, что торий дороже урана. Уран легче выделить. Некоторые урановые минералы (уранит, урановая смолка) - это простые окислы урана. У тория таких. простых минералов (имеющих промышленное значение) нет. А попутное выделение из редкоземельных минералов осложнено сходством тория с элементами семейства лантана.
Главная проблема получения делящегося материала из тория состоит в том, что он изначально не присутствует в реальном реакторном топливе, в отличие от U-238. Для использования ториевого воспроизводства высокообогащенный делящийся материал (U-235, U-233, Pu-239) должен использоваться в качестве топлива реактора с включениями тория по большей части только для возможности воспроизводства (т.е. не происходит или происходит незначительное выделение энергии, хотя сгорание U-233, полученного на месте, может внести вклад в выделение энергии). С другой стороны, тепловые бридерные реакторы (на медленных нейтронов) способны использовать U-233/торий цикл воспроизводства, особенно если в качестве замедлителя использовать тяжелую воду.
Торий является перспективным материалом для ядерной энергетики. Делящимся элементом при этом служит
, образующийся по схеме:Торий является перспективным материалом для ядерной энергетики. Делящимся элементом при этом служит
, образующийся по схеме:Достоинство тория как топливного материала определяется высокой температурой его плавления, отсутствием фазовых переходов, высокой механической прочностью и радиационной устойчивостью металлического тория и ряда его соединений. Использование тория в ядерной энергетике способно решить проблему истощения природных запасов урана. Из других областей применения тория представляет интерес его использование как катализатора, а также в качестве легирующих присадок к магнитным сплавам, используемым в авиационной и ракетной технике.
Торий вначале использовался в производстве светящихся красок. Особенно широко его применяли для нанесения на стрелки и циферблат часов. Однако , вскоре была обнаружена повышенная смертность среди работников, имеющих дело с этими красками. Как оказалось продукт распада тория радий-228 накапливается в костях, что и вызывало смертность работающих с красками. Сам торий очень опасен при попадании в кровь, так как вызывает осаждение протеина.
11.10 ПРОТАКТИНИЙ 91Pa
Как и для многих других элементов, для протактиния Д. И. Менделеев оставил клетку, назвав будущий элемент экатанталом. Экатантал оказался протактинием.
История открытия протактиния - одна из страниц истории поисков радиоактивных элементов и изотопов в природе. Протактиний почти одновременно обнаружили О. Ган и Л. Мейтнер в Германии и Ф. Содди и Дж. Кренстон в Англии. Новый радиоактивный элемент был обнаружен при переработке минералов урана точно так же, как полоний, радий, актиний. Это был самый долгоживущий изотоп элемента №91- протактиний-231 с периодом полураспада 35000 лет. Протактиний порожден распадом урана-235 по схеме:
U Ac