12.4 Астат
Астат (Менделеев в таблице оставил клетку для элемента с номером 85). В 1940 году Корсон, Маккензи и Сегре получили искусственный элемент облучением в циклотроне Вi α – частицами.
, Т1/2 = 7,2 часаАстат – в переводе с греческого языка означает нестабильный. В настоящее время для стандартизации элемент называется астат.
Позднее было доказано, что астат образуется в семействах урана –235, 238, тория, но все они являясь β- излучателями имеют очень короткие периоды полураспада. В земной коре оценивается содержание At в 69 мг в слое 1,6 км.
В настоящее время известно 24 изотопа астата с массовыми числами от 196 до 219, наиболее долгоживущие
и с периодами полураспада 8,3 и 7,2 часа соответственно.85-ый элемент является наиболее тяжелым элементом группы галогенов- не имеет нерадиоактивных изотопов, но помощью ядерных реакций
, Т1/2 = 7,2 часа или 209 83Bi (a,3n) 210 85At.В настоящее время этот элемент можно получить в количестве, достаточном для изучения его химии микрометодами.
Астат как все тяжелые элементы обладает рядом металлических свойств.молекулярного астата напоминают свойства молекулярного йода, но как все тяжелые элементы обладает рядом металлических свойств.
Астат по аналогии с иодом возгоняется, на чем основано его отделение от мишени.
Степени окисления –1, +1, +5 и, вероятно, +7. Подобно Bi и Po At может образовывать радиоколлоиды и сорбироваться на стекле и других материалах.
В организме астат ведет себя как йод (накапливается в щитовидной железе), на этом основано его использование в качестве радиофармацевтического препарата.
Вследствие малого Т1/2 астат не может быть получен в весомых количествах. Астат не имеет ни изотопных носителей, ни достаточно удовлетворительного специфического носителя.
Химия астата изучалась только ультрамикрохимическими методами при концентрации 10-9 – 10-15 моль/л.
12.5 Радон ( 86Rn)
В 1899 г. М. Кюри обнаружила, что воздух вокруг соединений радия становится проводником электричества. Исследованиями процессов радиоактивного распада урана-238, тория-234 и урана-235 Оуэнсон, Резерфордом и Дорном установлено, что изотопы радия-226Ra , 224Ra ,223Ra в результате испускания a-частиц превращаются в изотопы элемента с порядковым номером 86-радон( 222Rn),торон ( 220Rn), актинон(219Rn). В общем случае для этого элемента принято название радон по его наиболее долгоживущему изотопу 222Rn с Т1/2=3,8 дня. Благодаря тому, что уран, торий и радий широко распространены в природе( рудах, почве, воде) радон содержится в почве и земной атмосфере.
Кроме естественных изотопов радона в настоящее время получено искусственно еще более 10 короткоживущих изотопов с массовыми числами от 202 до 224. Основными методами получения искусственных изотопов радона являются реакции глубокого расщепления, пртекающие при облучении ториевых мишений протонами высоких энергий:
Определение молекулярной массы радона показало, что он является одноатомным газом. Радон бесцветен, сжижается в фосфоресцирующую жидкость с температурой кипения-61,8 0С, затвердевающую при -71 0С.Твердый радон светится ярко-голубым цветом.
Исследования химических свойств, проведенные Рамзаем, Резерфордом и Содди показали, что радон и его изотопы являются химическими аналогами инертных газов. Его электронная конфигурация 5s2 5p65d 10 6s2 6p6, т.е. его внешние электронные уровни полностью заполнены, что и определяет его инертность. В то же время, несмотря на то ,что радон принадлежит группе инертных газов, он образует вполне определенные группы соединений.Так, радон образует клатратные соединения с водой, фенолом, толуолом и т. п. В клатратных соединениях радона связь осуществляется за счет ван-дер-ваальсовых сил.
Радон, подобно другим инертным газам, при действии сильных окислителей, например, жидкого фтора, фторидов, О2F2, при определенных условиях образует фториды-RnF2 , а также комплексные ионы типа RnF×MeF6, RnF2×2Sb F5 , , RnF2×2BiF5 и RnF2×IF5. Радон получают накоплением при распаде радия, находящегося в растворе в специальной вакуумной аппаратуре. Радон применяют для получения искусственных радоновых ванн при лечении ревматизма, радикулита и прочих заболеваний. Радон нашел также применение в методах неразрушающего контроля для определения утечки трубопроводов, для исследования скорости движения газов и т. п.
Так как радон чрезвычайно опасен при попадании внутрь организма, все процедуры желательно осуществлять в специальных условиях, предотвращающих возможность попадания его в дыхательную систему.
Определяется радон либо радиометрическим методом по радиоактивности продуктов его распада и сравнению их с эталоном, либо непосредственно по интенсивности собственного a-излучения.
12.6 Франций( 87Fr)
В 1879 году Менделеев на основе созданной им периодической системы предсказал существование и описал свойства наиболее тяжелого щелочного элемента-экацезия. Лишь в 1939 г. Перей открыла элемент с порядковым номером 87, химически выделив его из продуктов распада актиния, и назвала в честь своей родины францием ( Fr):
227Ac®223Fr( Т1/2=21 мин.)
Из продуктов распада актиния, франций был выделен путем соосаждения с перхлоратом цезия.
В природе франций в ничтожных количествах содержится во всех урановых рудах( 1 атом Fr на 7,7×1014 атомов 235U или 3×1018 атомов природного урана).
В настоящее время известны изтопы франция с массовыми числами от 203 до 229, из них два изотопа с массовыми числами 223 и 224 встречаются в природе, являясь членами радиоактивных семейств 235U и 232Th.
Получают 223Fr также путем облучения 226Ra нейтронами по схеме:
226Ra(n,g) 227Ra(n,g) 227Ac (a-распад) 223Fr
Это один из самых долгоживущих изотопов франция.
Франций не может быть получен в весомых количествах, поэтому все физические характеристики его найдены рассчетным путем.
Химические свойства франция изучены только с ультрамикроконцентрациями элемента радиохимическими методами с использованием цезия в качестве носителя.
В соответствии с положением в периодической системе, франций должен иметь более отрицательный стандартный потенциал , чем цезий. Поэтому он может быть выделен только на ртутном катоде. Франций самый активный щелочной металл. Единственной степенью окисления франция является +1. Применяют франций в медицине и биологии при изучении распределения щелочных металлов в организме. Фиксируется он в основном в злокачественных опухолях, что делает его перспективным в ранней диагностике рака.
12.7 Радий (88Ra)
Радий был открыт М. и П.Кюри в 1898 г вслед за полонием. М. Кюри обнаружила, что интенсивность излучения смоляной руды в несколько раз сильнее, чем U3O8, полученный из металлического урана. Кюри было предположено, что руда содержит неизвестное вещество с более интенсивным излучением, чем уран. В двухлетних поисках этого вещества супруги Кюри провели химическое разложение большого количества урановой руды, химико-аналитическое разделение компонентов полученного раствора на фракции, содержащие известные химические элементы, и обнаружили, Было обнаружено, что фракции содержащии сульфид висмута и сульфат бария, обладают радиоактивностью. В дальнейшей работе с помощью дробной кристаллизации хлористого бария, полученного из сульфата бария, был выделен новый химический элемент с порядковым номером 88, названный Кюри радием (radius-луч). В настоящее время известно 13 изотопов радия, из них три являются членами естественных радиоактивных семейств. Наиболее долгоживущим из природных изотопов радия является изотоп 226Ra с периодом полураспада1622 года. 226Ra является a-g- излучателем и содержится во всех рудах урана. В 1 т урановой смоляной руды содержится около 400 мг 226Ra. В верхнем слое Земной коры толщиной 1,6 км содержится 1,8×107т 226Ra.
Радий представитель щелочно-земельных металлов и является самым тяжелым металлом главной подгруппы 11группы периодической системы. Единственной степенью окисления радия является+2. Радий, белый блестящий металл с Ткип.=1140 и Тпл.=960.
По своим химическим свойствам радий похож на барий, но более химически активен. Радий энергично разлагает воду, давая гидроокись Ra(OH)2, более растворимую, чем Ва(ОН)2. Все свежеприготовленные соли радия имеют белый цвет с характерным голубым свечением в темноте.
Радий обладает большой склонностью к сорбции из растворов на поверхности стеклянной посуды, фильтровальной бумаги, что затрудняет определение его физико-химических констант (например, растворимость солей радия). Радий склонен к комплексообразованию, так, например, он образует комплексы с лимонной ,молочной и винной кислотами.
Основная проблема при выделении радия из урановых руд состоит в отделении его от больших количеств урана и продуктов распада радия. Кроме методов сокристаллизации с изоморфными солями бария и свинца, для выделения радия используется хроматографические и экстракционные методы. Перспективным для выделения радия является использование неорганических неспецифических сорбентов, таких как Al2O3.