Смекни!
smekni.com

Элементарные стадии химических реакций основы теории (стр. 1 из 3)

2. Элементарные стадии химических реакций (основы теории)

При записи механизма реакции или при выдвижении набора механизмов (набора гипотез о механизмах) необходимо учитывать основные теоретические положения (постулаты, законы, принципы) и эвристические правила, которые позволяют оценить вероятность отнесения той или иной реакции к элементарным стадиям. Количественный ответ на этот вопрос дают пока еще очень трудоемкие профессионально выполненные квантово-химические расчеты. Поэтому использование простых правил и представлений о реакционной способности очень полезно.

В этом разделе мы рассмотрим очень кратко основные выводы и следствия различных теорий элементарной стадии, повторив и основные понятия химической кинетики.

Основные понятия химической кинетики

Концентрация вещества C определяется количеством молекул (или молей) в единице объема.

Число частиц должно быть большим, чтобы величину концентрации С можно было рассматривать как величину статистическую и одинаковую в любой части реакционного объема.

В системе устанавливается равновесное распределение частиц по внутренним степеням свободы (энергиям) и по скоростям поступательного движения – максвелл-больцмановское распределение (МБР). Между возбужденными и невозбужденными состояниями устанавливается статистическое (термическое) равновесие, характеризуемое одной температурой. Если химические реакции не нарушают термического МБР, то кинетику таких реакций называют “равновесной”. К равновесной кинетике относятся большинство реакций в газах, растворах и на поверхности при T < 1000оС. Неравновесная кинетика исследует фотохимические, плазмохимические реакции, процессы горения и взрыва.

Взаимодействие нескольких частиц (реагентов) с образованием молекул (частиц), называемых продуктами реакции, проходящее через один потенциальный барьер, называют элементарным актом химического процесса. Многократное повторение таких актов с участием большого числа молекул (частиц), называют элементарной реакцией или элементарной стадией (ЭС).

Число участников (реагентов) ЭС называют молекулярностью ЭС. Молекулярность m есть сумма стехиометрических коэффициентов участников ЭС (

).

Скорость реакции. Изменение количества молей i-того участника стадии (∆ni) в результате химической реакции определяется скоростью ri образования или расходования ni, временем реакции t и объемом V:Dni = j(ri, t, V). Поэтому скорость реакции ri есть производная второго порядка от ni по V и t:

(1)

Если ri одинакова по всему объему и V = const (закрытая система), то DniµV, и дифференцирование по V заменяется делением на V:

(2)

Если в открытой системе реакция стационарна, то Dniµt, и дифференцирование по t заменяется делением на t (реактор идеального вытеснения):

(3)

где Fi – мольный поток (

).

Если выполнены оба условия (безградиентный проточный реактор, реактор полного смешения), то скорость

или
.

Скорость j-той стадии при V = const есть производная степени глубины реакции c по времени в единице объема

, где
(4)

отсюда

(5)

Изложенные соображения справедливы и для участников итоговых уравнений стационарных, квазистационарных и нестационарных реакций.

Основные законы, постулаты и принципы

Рассмотрим основные законы, постулаты, принципы и эвристические правила, лежащие в основе теории элементарной стадии:

Законы сохранения массы и элементов в ходе химической реакции (в закрытой системе):

(6)

(7)

где

– вектор-строка стехиометрических коэффициентов участников реакции,
– вектор-столбец молекулярных масс участников реакции, H – атомная (молекулярная) матрица.

Закон сохранения энергии.

Закон действия масс (Гульдберг–Вааге, Вант-Гофф). Согласно этому закону скорость элементарной стадии в одном направлении пропорциональна произведению концентраций реагентов в степенях, соответствующих стехиометрическим коэффициентам в уравнении стадии

(8)

Для реакции

(9)

(10)

где k+ – константа скорости (удельная скорость при

= 1). Сумма bi соответствует молекулярности реакции, а показатель bi называют порядком реакции. В случае ЭС суммарный порядок совпадает с молекулярностью.

- Постулат о необходимости соударений молекул (частиц) для реализации химического превращения. Даже в случае мономолекулярных реакций основой всех теорий считается схема Линдеманна-Христиансена, согласно которой молекула реагента А в реакции А ® В приобретает необходимую для превращения в В энергию в результате столкновения с любыми молекулами М (инертного газа, продукта и с другой молекулой реагента).

В случае квазистационарности по [А*]

(11)

При больших концентрациях М (больших давлениях)

k–1[M] >> k2 и

.

При низких концентрациях М лимитирующей становится первая стадия в прямом направлении с уравнением 2го порядка. Вероятность соударений двух молекул в бимолекулярной реакции или фактор соударений

см3/сек существенно ниже фактора (вероятности) тройных соударений
см6/сек, поэтому вероятность таких реакций низка. Тримолекулярные реакции в подавляющем числе примеров являются блоками бимолекулярных ЭС.

Простые соображения, вытекающие из теории соударений в газовой фазе, позволяют сформулировать первое очень важное правило отбора – молекулярность (m) элементарной стадии не превышает 2 (m£ 2).

В газовой фазе частицы сталкиваются по всему объему. В жидкой фазе – только в свободном объеме клетки из молекул растворителя. В первой сфере такой клетки молекулу реагента А окружает 8 – 12 молекул растворителя. Для того, чтобы столкнуться, молекулы A и B в этом случае должны в результате диффузии попасть из клеток Asol и Bsol в общую клетку (AB)sol, т.е. образовать так называемую диффузионную пару. Поскольку свободный объем клетки Vf составляет 0,2 – 2% от V растворителя, частота столкновений в таком объеме будет больше, чем в объеме V газовой фазы. Экспериментальное отношение констант скорости kж/ kг одинаковых бимолекулярных элементарных реакций в неполярных растворителях составляет 10 – 150. Очевидно, что вероятность соударения трех частиц в одной клетке не увеличится заметно по сравнению с газофазными реакциями, а вероятность образования диффузионной тройки в одной клетке ниже вероятности образования диффузионной пары.

В реакциях таких сложных молекул, как ферменты, молекулярность отдельных стадий также не превышает двух. Однако, в случае ферментов в активном центре фермента возможно многоцентровое связывание и синхронное участие в элементарном акте большого числа (3 – 4) активных групп. Таким образом, по отношению к комплексу фермент-субстрат (ES) реакция является, например, бимолекулярной (ES + H2O), а в полости активного центра происходит многоцентровой процесс. Сильное падение энтропии активации в этом случае компенсируется повышением энтропии за счет изменения третичной структуры белка и его дегидратации в результате вызванной образованием комплекса ES перестройки белка.

- Принцип микроскопической обратимости (постулат) исходит из обратимости любого элементарного акта, т.е. из обратимости любого микроскопического процесса, протекающего на молекулярном уровне. В макроскопическом описании больших ансамблей молекул (частиц) появляются МБР, статистические термодинамические характеристики (DH, DS) и, соответственно, возможность необратимости. Сумма элементарных актов в прямом направлении, т.е. макроскопический процесс, компенсируется суммой элементарных актов в обратном направлении при достижении равновесия. Микроскопически обратимый процесс в макроскопической системе может быть необратимым. В макросистеме обратимых стадий, каждая стадия (реакция) самостоятельно доходит до равновесия, когда изменение химического потенциала Dm (или химического сродства А) станет равным нулю