Отсюда можно вывести структурную формулу этанола:
H H
| |
H – C – C – H
| |
HH
Наоборот, зная структурную формулу этанола, можно предвидеть, что натрий будет вытеснять только один атом водорода, который связан с атомом кислорода.
Изучая свойства глюкозы, мы убедились, что в ее молекуле пять групп – он и одна альдегидная группа. Наоборот, зная структурную формулу глюкозы, можно предвидеть, что глюкоза будет проявлять свойства альдегидов и спиртов.
IV. Химические свойства фенола обусловлены наличием в его молекуле гидроксильной группы и бензального ядра, которые взаимно влияют друг на друга. Наличие гидроксильной группы предопределяет сходство фенола со спиртами:
1. Сходство, сходное со свойствами спиртов:
2C6H5OH + 2 Na → 2C6H5ONa + H2 ↑
2. Свойство, отличающееся от свойств спиртов:
C6H5OH + NaOH → C6H5ONa + H2O
3.
4. Реакция нитрования
Влияние бензольного ядра на гидроксильную группу обуславливает большую подвижность ее водородного атома. Поэтому фенол, в отличие от спиртов, реагирует со щелочами, т.е. обладает свойствами слабых кислот. Его иногда называют карболовой кислотой. Это объясняется тем, что бензольное ядро оттягивает к себе электроны кислородного атома гидроксильной группы. Чтобы компенсировать это, атом кислорода сильнее притягивает к себе электронную плотность от атома водорода. Вследствие этого кавалентная связь между атомами кислорода и водорода становится более полярной, а атом водорода – более подвижным. Гидроксильная группа в свою очередь придает атомам водорода большую подвижность в положении 2, 4, 6. Это один из многих примеров, подтверждающих тезис теории А.М. Бутлерова о взаимном влиянии атомов в молекулах.
Химические свойства анилина обусловлены наличием в его молекуле аминогруппы - NH2 и бензольного ядра. Анилин более слабое основание. Чтобы ответить на этот вопрос, нужно вспомнить о взаимном влиянии атомов и атомных групп в молекулах. Как и в молекулах фенола (об этом говорилось раньше) бензольное ядро несколько оттягивает свободную электронную пару от атома азота аминогруппы. Вследствие этого электронная плотность на атоме азота в молекуле анилина уменьшается и он слабее притягивает к себе протоны, т.е. основные свойства анилина ослабляются. Важнейшие свойства анилина:
1. Реагирует с кислотами с образованием солей:
C6H5 – NH2 + HCl → C6H5 NH3 Cl
2. Образовавшиеся соли реагируют со щелочами и снова выделяются анилин:
C6H5 – NH3 Cl+ NaOH → C6H5 NH2 + Na Cl + H2O
3. Энергично участвует в реакциях замещения, например реагирует с бромной водой с образованием 2, 4, 6 – триброманилина:
Взаимное влияние атомов в молекулах галогенопроизводных углеводород.
Самое характерное химическое свойство предельных углеводородов – реакции замещения. Примером такой реакции является взаимодействие предельных углеводородов с галогенами. Аналогично с галогенами реагируют и другие предельные углеводороды:
CH3-CH3+Cl2 → CH3-CH2-Cl+HCl
Галогенопроизводные углеводороды обладают некоторыми особенностями. Согласно теории А.М. Бутлерова, это объясняется взаимным влиянием атомов и атомных групп в химических соединениях. С точки зрения современных представлений об электронных облаках и их взаимном перекрывании, с учетом электроотрицательности химических элементов взаимное влияние атомов и атомных групп, например в метилхиориде, объясняется так. У атомов хлора электроотрицательность больше, чем у атомов углерода. Поэтому электронная плотность связи смещена от атома углерода в сторону атома хлора. Вследствие этого атом хлора приобретает частичный отрицательный заряд, а атом углерода – частичный положительный заряд. Приобретаемые частичные заряды обозначаются δ+ и δ- :
H | H |
\ δ+ δ- | ↓ |
H- C → Cl или | H → C → Cl |
/ | ↑ |
H | H |
Влияние атома хлора распространяется не только на атом углерода, но и на атомы водорода. Из-за этого электронная плотность атомов водорода смещается в сторону атома углерода и химические связи между атомами водорода и углерода становится более полярными. В результате атомы водорода в молекуле метилхлорида оказываются менее прочно связанными с атомом углерода и легче замещаются на хлор, чем первый атом водорода в молекуле метана. Из-за смещения электронных плотностей от атома водорода к атому углерода значение положительного заряда последнего уменьшается. Поэтому ковалентная связь между атомами углерода и хлора становится менее полярной и более прочной.
С точки зрения ионного механизма сущность правила В.В. Марковникова при взаимодействии пропилена с бромоводородом объясняется следующим образом: в молекуле пропилена в результате сдвига электронной плотности второй атом углерода, который связан с метилрадикалом заряжен более положительно, чем первый.
Значение электроотрицательности у атомов углерода больше, чем у атомов водорода. Поэтому третий атом углерода метильной группы в результате сдвига электронной плотности от трех атомов водорода приобретает относительно больший отрицательный заряд, чем другие атомы углерода. Этот избыточный отрицательный заряд в свою очередь смещает подвижные П-электронные облака от второго к первому атому углерода. В результате такого сдвига первый атом углерода приобретает больший отрицательный заряд, а второй становится более положительным. В результате атом водорода (+) присоединяется к атому углерода (-), а галоген (-) – к атому углерода (+).
Бензол очень стоек к окислению. В отличие от него ароматические углеводороды с боковыми цепями окисляются относительно легко.
1. При действии энергичных окислителей (KMnO4) на гомолоне бензола окислению подвергаются только боковые цепи. Если, например, в пробирку налить 2-3 мл толуола, затем добавить к нему раствор перманганата калия и нагреть, то можно заметить, что фиолетовая окраска раствора постепенно обесцвечивается. Это происходит потому, что по действием перманганата калия метильная группа толуола окисляется и превращается в группу
O |
// |
- C |
\ |
OH |
O |
// |
C6H5-CH3+3O → C6H5-C + H2O |
\ |
OH |
Известно, что метан и другие предельные углеводороды весьма устойчивы к действию окислителей. Однако метильная группа в молекуле толуола окисляется сравнительно легко. Это объясняется влиянием бензольного кольца. Из приведенных примеров реакций замещения и окисления следует, что не только метильная группа влияет на бензольное кольцо, но и бензольное кольцо влияет на метильную группу, т.е. их влияние зависимо.