Смекни!
smekni.com

Микроэмульсионный метод получения оксида цинка (стр. 3 из 8)

Рисунок 8 – Процесс межмицеллярного обмена

Образование эмульсии – эмульгирование может происходить как в результате конденсационного выделения новой дисперсной фазы, так и при диспергировании одной жидкой фазы в другой.

Диспергирование может происходить самопроизвольно или в результате механического воздействия. Самопроизвольное эмульгирование возможно при очень низких значениях поверхностного натяжения границы раздела двух жидкостей (менее сотой доли мН/м) и приводит к образованию термодинамически равновесных критических эмульсий.

Кроме того, самопроизвольное эмульгирование может происходить в результате диффузионного переноса веществ (обычно ПАВ) из одной фазы в другую. Для механического эмульгирования применяют различные гомогенизаторы и диспергаторы. Возможность образования эмульсии, их тип и стабильность определяются поверхностными явлениями на границах раздела фаз и зависят, прежде всего, от наличия в системе ПАВ-эмульгаторов, их концентрации и молярного строения, в частности гидрофильно-липофильного баланса (ГЛБ).

Стабилизаторами прямых эмульсий являются водорастворимые ПАВ с высокими значениями ГЛБ (более 8): анионные (мыла щелочных металлов, натриевые и триэтаноламиновые соли алкилсульфокислот и алкилфосфорных кислот), неионогенные (твины, этоксилаты спиртов и алкил фенолов), катионные (алкилимидазолины, четвертичные аммониевые соли), высокомолекулярные ПАВ как природного происхождения (лецитины, полисахариды, липопротеины, белки), так и синтетические (поливиниловый спирт, полиакрилаты) [32].

Для стабилизации обратных эмульсий используют мыла переходных металлов, моноалканоламиды, неионогенные ПАВ с низким ГЛБ, например, спан-80, этиленоксилаты высших спиртов и кислот.

При взаимодействии стабилизированных мылами щелочных металлов прямых эмульсий с многозарядными ионами может происходить так называемое обращение фаз – самопроизвольное превращение прямой эмульсии в обратную; при использовании неионогенных эмульгаторов обращении фаз может происходить с ростом температуры.

В трехкомпонентных системах вода – углеводород – неионогенное ПАВ и в многокомпонентных системах вода (иногда с добавками электролитов) – углеводород – ионное ПАВ – со-ПАВ (обычно спирты со средней длиной цепи) в определенном температурном интервале происходит образование термодинамически стабильных микроэмульсий, характеризующихся ультранизким межфазным натяжением на границах раздела между водой и углеводородом.

Нарушение устойчивости эмульсии связано с протеканием в системе процессов седиментации, коагуляции капель, их слияния и диффузионного переноса вещества от малых капель к более крупным (оствальдово созревание, изотермическая перегонка, переконденсация). Седиментация грубодисперсных эмульсий может быть прямой или обратной (образование «сливок») в зависимости от соотношения плотностей жидкостей, служащих дисперсионной средой и дисперсной фазой. Для предотвращения седиментации проводят дополнительное диспергирование (гомогенизацию) эмульсии или вводят добавки, выравнивающие плотности фаз. Устойчивость к коагуляции достигнута при использовании ионогенных ПАВ; в случае обратных эмульсий эффективно применение Fe- и Cr-солей высших жирных кислот.

Практически полное предотвращение коалесценции возможно при использовании ПАВ, особенно высокомолекулярных, создающих на поверхности капель структурно-механический барьер.

Одним из наиболее эффективных способов замедления переконденсации эмульсии является введение в состав дисперсной фазы добавок, практически нерастворимых в дисперсионной среде: для прямых эмульсий – углеводородов с большой молярной массой, для обратных эмульсий – электролитов.

П.А. Демченко предложил классификацию ПАВ, независимо от их химического строения, по значениям критической концентрации мицеллообразования (ККМ) и солюбилизирующей способности. В соответствии с этой классификацией все ПАВ делятся на три группы [33].

Первая группа содержит те ПАВ, у которых моющая и солюбилизирующая способность выражена слабо. Это, как правило, вещества, содержащие в своем составе малоразвитые углеводородные радикалы, включающие гидрофильные группы и гетероатомы. Такие вещества обладают типичными свойствами смачивателей, диспергаторов, стабилизаторов и других ПАВ, не образующих мицеллярных растворов или образующих их при сравнительно высоких концентрациях. Значение ККМ для этой группы ПАВ выше 7 г/л. Такие ПАВ хорошо растворимы в воде и других полярных растворителях.

Ко второй группе относят типичные моющиевещества, эмульгаторы и солюбилизаторы, образующие мицеллы в растворах при средних концентрациях. Их ККМ находится в пределах от 0,2 до 7 г/л.

К третьей группе относят ПАВ с высокоразвитыми углеводородными радикалами, труднорастворимые в воде при обычных температурах, но растворимые в маслах. Их ККМ ниже 0,2 г/л. Такие ПАВ обладают значительной растворимостью в углеводородах, образуют эмульсии типа «вода в масле», загущают масла и образуют системы типа консистентных смазок; углеводородные растворы их солюбилизируют воду и другие полярные вещества. В виду малой растворимости таких ПАВ, они не могут применяться в качестве самостоятельных моющихвеществ, но их рационально применять в оптимальных количествах в композициях поверхностно-активных материалов в качестве понизителя ККМ.

Приведенная выше классификация ПАВ основана на коллоидно-химических свойствах растворов ПАВ и её можно использовать для практических целей при составлении композиций поверхностно-активных веществ, например, для моющих средств и текстильно-вспомогательных веществ.

Вполне достаточно простых измерений, чтобы решить вопрос о том, к какой из групп отнести данное ПАВ или их смесь и определить область его рационального использования.

Свойства материалов и систем, получаемых на основе ПАВ, можно регулировать не только изменением химического строения их молекул, но и взаимным влиянием в смесях, в которых компоненты взяты в различных соотношениях, а также при помощи добавок органических полярных веществ различной молекулярной массы и неорганических веществ – электролитов.

Например, прибавление к ПАВ, отнесенным к первой группе, различных веществ, вызывающих понижение ККМ, сопровождается повышением их моющей и солюбилизирующей способности.

Если к ПАВ, отнесенным к третьей группе, прибавлять полярные вещества и низшие гомологи, не образующие мицеллярных растворов, или различные ПАВ, отнесенные к первой группе, то растворимость этих веществ (ПАВ III-группы) увеличивается и процесс мицеллообразования в системе сдвигается в сторону более высоких концентраций. Свойства систем можно изменять, таким образом, до значений, присущих веществам, отнесенным ко второй группе и обладающих высокой моющей и солюбилизирующей способностью.

Выбор цетилтриметиламмония бромида (ЦТАБ) для получения микроэмульсий связан с тем, что в широкой области концентраций молекулы ЦТАБ образуют мицеллы сферической формы, а, кроме того, данный ПАВ является одним из наиболее изученных [34].

Рисунок 9 – Обратная мицелла ЦТАБ в трехкомпонентной системе

ЦТАБ (CTAB) – ЦетилТриметилАммоний Бромид (ЦТАБ) состоит из гидрофобного хвоста (цетила) и положительно заряженного четвертичного аммония, на конце которого находится бром (гидрофильная часть).

R-(CH3)3NBr,

где R – это цетил (C16H33).

Радиус молекул ЦТАБ или мицелл, в составе которых, как целого, осуществляется диффузия молекул ЦТАБ, выразится формулой [34]:

RЦТАБ = RВ DВ / DЦТАБ ,

где RВ – радиус молекул воды, в расчетах принимается равным 1,42 Е; DB– коэффициент диффузии воды; DЦТАБ – коэффициент диффузии ПАВ.

В отсутствие агрегирования эти размеры должны быть порядка размеров молекул ПАВ, и должны характеризовать мицеллы при наличии мицеллообразования.

1.4 Обсуждение выбранного направления и задачи исследований

Анализ информации, приведенной в разделах 1.1 – 1.3, позволяет в системном виде (в рамках обсуждения) сделать следующие заключения:

1) Наиболее перспективным и распространенными являются следующие ПАВ: додецилсульфат натрия (SDS), бис (2-этиленгексил) сульфосукцинат натрия (AOT), цетилтриметилбромид аммония (CTAB);

2) Химические реакции в мицеллярных системах – простой, перспективный, технологичный метод для получения, стабилизации и изучения наночастиц;

3) Применение в качестве ПАВ цетилтриметилбромида аммония обеспечивает получение сферических частиц с размером от 1 до 100 нм.

Анализ литературных и патентных данных в области изучения микроэмульсионного метода получения нанокристаллического оксида цинка указывает на недостаточность исследований в этой области.

Поэтому, в соответствии с целью, сформулированной во введении, и результатами анализа литературы, в дипломной работе последовательно решали следующие задачи:

1) изучали методы синтеза нанокристаллического оксида цинка;

2) определяли области применения люминофоров на основе оксида цинка и требования к этим люминофорам;

3) выбирали наиболее простые и приемлемые с экологической точки зрения методы синтеза;

4) синтезировали образцы люминофоров на основе оксида цинка;

5) проводили комплекс исследований полученных результатов.


2 ЭКСПЕРИМЕНТАЛЬНЫЙ РАЗДЕЛ

2.1 Определение критической концентрации мицеллообразования поверхностно – активных веществ (ПАВ) различными методами

В водных растворах коллоидных ПАВ при очень низких концентрациях, соответствующих критической концентрации мицеллообразования (ККМ), образуются сферические мицеллы, которые содержат от 20 до 100 молекул и характеризуются узким распределением частиц по размерам. При увеличении концентрации ПАВ происходит переход мицеллы из одной формы в другую (цилиндрическую, дискообразную и т. д.) при соответствующей критической концентрации ККМ2, ККМ3 и т. д.