Смекни!
smekni.com

Получение акролеина газофазным окислением пропилена кислородом воздуха (стр. 2 из 9)

Соединения

кДж/моль

Дж/(моль·К)

Cp, Дж/(моль·К)
a в · 103 с · 106
Пропилен 20,41 266,94 12,44 188,38 - 47,60
Кислород 0 205,04 31,46 3,3 - 3,77
Акролеин - 80,77 287,90 31,26 150,0 - 49,06
Вода - 241,81 188,72 30,0 10,71 0,33
СО2 - 393,51 213,66 44,14 9,04 - 8,54
СО - 110,53 197,55 28,41 4,10 - 0,46

определяем термодинамическую вероятность протекания реакции (1):

СН2 = СН –– СН3 + О2 СН2 = СН –– СНО + Н2О

Поскольку энергия Гиббса для реакции (1) при температурах 653 и 693К принимает отрицательное значение, то в интервале температур от 653 до 693К реакция (1) термодинамически возможна.

Определяем термодинамическую вероятность протекания реакции (2):

С3Н6 + 4,5О2 3СО2 + 3Н2О

Поскольку энергия Гиббса для реакции (2) при температурах 653 и 693К принимает отрицательное значение, то в интервале температур от 653 до 693К реакция (2) термодинамически возможна.

Определяем термодинамическую вероятность протекания реакции (3):

С3Н6 + 3О2 3СО + 3Н2О

Таким образом в интервале температур от 653 до 693К все три реакции термодинамически возможны.

1.4 Кинетика процесса окисления пропилена

Процесс окисления пропилена проходит в присутствии катализатора и является гетерогенно-каталитическим. В качестве катализатора используется оксиды переходных металлов CuO + Cu2O, V2O5, в то время как другие оксиды неселективны или способствуют полному окислению. В нашем проекте используется катализатор CuO на силикагеле. Процесс окисления проходит по окислительно-восстановительному механизму. Он состоит в том, что сорбированный на ионе металла углеводород окисляется кислородом, металл при этом восстанавливается в низшее валентное состояние и затем вновь взаимодействует с кислородом, переходит в первоначальную форму:

2Cu2O + CH2 = CH –– CH3 4Cu + CH2 = CH –– CHO + H2O

4Cu + O2 2Cu2O

Этот механизм подтверждается тем, что ожидаемые продукты могут получаться на катализаторе в отсутствие кислорода, а стадии окисления углеводорода и окисления катализатора можно проводить раздельно.

В механизме гетерогенных реакций окисления важную роль играет адсорбция реагентов на поверхности контакта. На металлах кислород сорбируется очень быстро с последующим более медленным проникновением в приповерхностный слой. Кислород сорбируется на контакте без диссоциации или с диссоциацией молекулы. Причём металл поставляет требуемые электроны и переводит адсорбированный кислород в состояние ион-радикала:


+ Me

Me + O2 Me –– O ––

2Me ––

Углеводороды сорбируются на металлах сравнительно слабо и обратимо. Прочнее они сорбируются на оксидных катализаторах, причём электроны, необходимые для образования связей, поставляются молекулой олефина, которая переходит в состояние хемосорбированного ион-радикала.

Cu++ + CH2 = CH –– CH3 Cu+–– CH2 ––

H –– CH3

Ион металла при этом восстанавливается в одной из низших валентных форм. В результате совместного действия кислорода, ионы металлов часто находятся в разных валентных состояниях. В слое катализатора в зависимости от состава реакционной смеси и условий реакции устанавливается динамическое равновесие:

CuCu2OCuO

Из этих трёх форм оксид меди (I) является специфическим, селективно действующим катализатором окисления пропилена в акролеин. Оксид меди (II) оказывает каталитическое действие на реакцию полного окисления пропилена в СО2, а металлическая медь неактивна.

При избытке кислорода по отношению к пропилену концентрация Cu2O в катализаторе может достигать 70%, что положительно сказывается на выходе акролеина.

1.5 Методы получения акролеина

1) из глицерина

H2SO4, 190°C

СН2(ОН)СН(ОН)СН2ОН CH2 = CHCHO + 2H2O

2) из диаллилового эфира

515°С

СН2 = СНСН2 –– О –– СН2СН = СН2 СН2 = СНСНО + СН2 = СНСН3

3) из аллилового спирта

О2, 200°С

СН2 = СНСН2ОН СН2 = СНСНО

4) из тетрагидрофурфурилового спирта

5) из формальдегида и ацетальдегида

300-320 °С, SiO2

НСНО + СН3СНО СН2 = СНСНО + Н2О + 19,5 ккал

6) из пропилена

СН2 = СНСН3 СН2 = СНСНО + Н2О

Применение в промышленности нашли только два последних метода. Однако из-за применения дорогостоящего сырья, серной кислоты и образования сульфата аммония, в настоящее время широко используется только метод прямого окисления пропилена.

2 Обоснование выбора оптимальных условий процесса синтеза

Кинетические уравнения, полученные при исследовании конкурентного химического процесса используют для выбора оптимальных условий его реализации, то есть выбора типа реакторов, температуры, начальных концентраций и мольного соотношения реагентов, степени конверсии и т.д. Обычно руководствуются двумя главными показателями: удельной производительностью реактора и селективностью процесса. Однако ни один из них отдельно не может служить критерием для окончательного выбора одного варианта проведения процесса. Таковыми являются ещё и экономические показатели, а именно минимум себестоимости продукта, максимум прибыли при его производстве или минимум удельных приведенных затрат. Но оптимизация по последним критериям представляет сложную задачу, поэтому определять оптимальный режим синтеза акролеина будем с точки зрения интегральной селективности целевого продукта по исходному ключевому реагенту

и максимальной удельной производитель-ности
. При выборе реактора предпочтения отдаём реактору идеального вытеснения, т.к. он обладает большей производительностью, чем реактор полного смешения. Кроме того в реакторах идеального вытеснения достигается более высокая степень конверсии.

2.1 Связь селективности с кинетикой

Процесс окисления пропилена в акролеин представляет собой систему параллельных реакций:

СН2 = СН –– СН3 + О2

СН2 = СН ––СНО + Н2О (1)

А + Y

B + D

C3H6 + 4,5O2

3CO2 + 3H2O (2)

A + Y

C + D

C3H6 + 3O2

3CO + 3H2O (3)