Смекни!
smekni.com

Химические загрязнители атмосферы (стр. 2 из 7)

. Тепловые электростанции(27%);

. Предприятия черной(24%) и цветной (10,5%) металлургии;

. Нефтехимическое;

. Строительных материалов(8,1%), химической промышленности(1,3%);

. Автотранспорта (13,3%).

Типы загрязнений и вредных воздействий: физические загрязнения - радиоактивные элементы (излучение), нагрев или тепловое загрязнение, шумы; биологические загрязнения - микробиологическое отравление дыхательных и пищевых путей (бактерии, вирусы), изменение биоценозов вследствие внедрения чужеродных растений или животных; химические загрязнения -- газообразные производные углерода и жидкие углеводороды, моющие средства, пластмассы, пестициды, производные серы, тяжелые металлы, фтористые соединения, аэрозоли и др.; эстетический вред - нарушение ландшафтов, примечательных мест малопривлекательными постройками и др.

Влияние на организм тяжелых металлов

В последнее время все острее стоит проблема загрязнения окружающей среды вредными компонентами. К числу этих загрязнителей, прежде всего, относятся некоторые тяжелые металлы. Было установлено, что основным путем (до 70%) поступления их в организм человека являются пищевые продукты. Эти исследования убедительно доказали, что неконтролируемое загрязнение пищевых продуктов токсичными металлами может вызвать серьезные последствия в организме. Для предотвращения и ослабления этих последствий появились законодательства, регулирующие предельное содержание токсичных элементов в продуктах питания. Объединение комиссия ФАО и ВОЗ по пищевому кодексу включила в число обязательных компонентов пищевых продуктов , подвергаемых контролю, 8 наиболее опасных токсичных элементов: ртуть, кадмий ,свинец, мышьяк, медь, олово, цинк и железо. Одним из самых распространенных и опасных токсикантов является свинец. В земной коре он содержится в незначительных количествах. Вместе с тем мировое производство свинца составляет более 3,5 тонн в год, и только в атмосферу поступает в переработанном и мелкодисперсном состоянии 4,5 тонн в год. Среднее содержание свинца в продуктах питания 0,2 мг/кг. Отмечено активное накопление свинца в растениях и мясе сельскохозяйственных животных вблизи промышленных центров, крупных автомагистралей. По данным К.Рейли взрослый человек получает ежедневно с пищей 0,1- 0,5 мг свинца. Общее его содержание в организме составляет 120 мг. В организме взрослого человека усваивается в среднем 10% поступившего свинца, у детей – 30 – 40%. Из крови свинец поступает в мягкие ткани и кости, где депонируется в виде трифосфата. 90% поступившего свинца выводиться из организма с фекалиями, остальные – с мочой и другим биологическими жидкостями. Механизм токсичного действия свинца определяется по следующей схеме: проникновение свинца в нервные и мышечные клетки, образование лактама свинца путем взаимодействия с молочной кислотной, затем фосфатов свинца, которые создают клеточный барьер для проникновения в нервные и мышечные клетки ионов кальция. Основными мишенями при воздействии свинца являются кроветворная, нервная, пищеварительная системы и почки. Отмечено его отрицательное влияние на половую функцию организма.

Кадмий в природе в чистом виде не встречается, это сопутствующий продукт при рафинировании цинка и меди. С рационом взрослый человек поучает Сdдо 150 мг/кг и выше в сутки(92 – 94%)

Медь принимает активное участие в процессах жизнедеятельности, входя в состав ряда ферментных систем. Суточная потребность -4–5 мг. Дефицит меди приводит к анемии, недостаточности роста, ряду других заболеваний, в отдельных случаях – к смертельному исходу.

Цинк входит в состав около 80 ферментов, участвуя в многочисленных реакциях обмена веществ. Типичными симптомами недостаточности цинка является замедление роста у детей, половой инфантилизм у подростков, нарушение вкуса и обоняния и др. Основным источником поступления металлов в растения является почва. Плодородная почва должна обеспечиваться микро и макропитательными веществами, необходимыми для роста растений. Все почвы, содержав незначительном количестве многие элементы органической и в неорганической форме. Содержание микроэлементов в разных почвах колеблется в широком интервале. Более высокий уровень загрязнения тяжелыми металлами отмечается в верхнем

(0-10см), наиболее гумусированном слое почвы, что является одной из причин повышенного содержания тяжелых металлов в сельскохозяйственной продукции. Опасность состоит в том, что химическое загрязнение длительное время может не проявляться и выращенная на такой почве, с виду нормальная сельскохозяйственная продукция, может оказать токсическое воздействие на здоровье человека. Северо-Осетинская станция агрохимической службы проводит агроэкологический мониторинг почв сельскохозяйственное назначения, в том числе ведет наблюдение за содержанием тяжелых металлов. Анализ почвенных проб, взятых в районах нашей республики на содержание тяжелых металлов, выполнялся нами атомной – адсорбционным методом. В результате исследований было выявлено, что основными загрязнителями почв в РСО-Алания являются: свинец, цинк, кадмий и медь. В связи с этим следует принимать меры не только по снижению содержания тяжелых металлов в почве, но и разрабатывать мероприятия по снижению их содержания в сельскохозяйственной продукции и пищевых продуктах, получаемые из этой продукции.

Медь

Медь относится к числу металлов, известных с глубокой древности. Раннему знакомству человека с медью способствовало то, что она встречается в природе в свободном состоянии в виде самородков, которые иногда достигают значительных размеров. Медь и ее сплавы сыграли большую роль в развитии материальной культуры. Благодаря восстановимости оксидов и карбонатов медь была, по-видимому, первым металлом, который человек научился восстановлять из кислородных соединений, содержащихся в рудах. Латинское название меди происходит от названия острова Кипр (лат. Cuprum), где древние греки добывали медную руду. В древности для обработки скальной породы ее нагревали на костре и быстро охлаждали, причем порода растрескивалась. Уже в этих условиях были возможны процессы восстановления. В дальнейшем восстановление вели в кострах с большим количеством угля и с вдуванием воздуха посредством труб и мехов. Костры окружали стенками, которые постепенно повышались, что привело к созданию шахтной печи. Позднее методы восстановления уступили место окислительной плавке сульфидных медных руд с получением промежуточных продуктов – штейна (сплава сульфидов), в котором концентрируется медь, и шлака (сплава окислов).Сейчас существуют методы, позволяющие получать наночастицы меди, упорядоченные в виде цепей, колец или трехмерных сверхрешеток, которые обладают уникальными физическими свойствами и считаются перспективными материалами для создания плазменных волноводов для фотонных устройств, химических и биологических сенсоров. Существует целый ряд методов, позволяющих варьировать морфологию наночастиц металлов и, поэтому, изменять физические свойства материалов на их основе.Среднее содержание меди в земной коре 4,7•10–3 % (по массе), в нижней части земной коры, сложенной основными породами, ее больше (1•10–2%), чем в верхней (2•10–3%), где преобладают граниты и другие кислые изверженные породы. Медь энергично мигрирует как в горячих водах глубин, так и в холодных растворах биосферы; сероводород осаждает из природных вод различные сульфиды Меди, имеющие большое промышленное значение. Среди многочисленных минералов Меди преобладают сульфиды, фосфаты, сульфаты, хлориды, известны также самородная медь, карбонаты и оксиды.

Медь – важный элемент жизни, она участвует во многих физиологических процессах. Среднее содержание меди в живом веществе 2•10–4%, известны организмы – концентраторы меди. В таежных и других ландшафтах влажного климата медь сравнительно легко выщелачивается из кислых почв, здесь местами наблюдается дефицит меди и связанные с ним болезни растений и животных (особенно на песках и торфяниках). В степях и пустынях (с характерными для них слабощелочными растворами) медь малоподвижна; на участках месторождений меди наблюдается ее избыток в почвах и растениях, отчего болеют домашние животные.

Метилртуть

Ртуть в составе выбросов из антропогенных и природных источников поступает в атмосферу в неорганической форме и затем в результате протекания биологических процессов может преобразовываться в метилртуть в почве и водной среде.

В окружающей среде происходит биологическая аккумуляция метилртути, которая беспрепятственно поступает в человеческий организм через пищевые продукты. Атмосферные концентрации ртути в Европе, а также во всем мире обычно находятся на уровне, существенно ниже того, при котором, как известно, оказывается негативное воздействие на здоровье человека в результате вдыхания ртути. Концентрации неорганических соединений ртути в почве и подземных водах обычно находятся на уровне существенно ниже того, при котором, как известно, возникают негативные последствия для здоровья человека в результате потребления питьевой воды.

Метилртуть является сильнодействующим нейротоксичным химическим веществом. Неврожденные дети (т.е. зародыши) являются наиболее уязвимой группой и подвергаются воздействию этого химического вещества главным образом в результате потребления рыбы в рационе матери. Метилртуть также выделяется вместе с молоком матери. Данные человеческого биомониторинга и биомоделирования режима питания свидетельствуют о том, что допустимые объемы поступления метилртути в составе пищевых продуктов превышаются в подгруппах населения, которые потребляют значительное количество рыбы, например в Скандинавии, Северной Америке и Франции. Концентрации ртути в размере 0,5 мг/кг, т.е. показателя, использующегося во многих странах в качестве опорного, нередко превышаются для некоторых видов (главным образом крупных хищных) пресноводных и морских рыб и млекопитающих.