Смекни!
smekni.com

Химические элементы (стр. 5 из 10)

Современные медные монеты делаются из алюминиевой бронзы – сплава меди с 4,5...5,5% алюминия.

Печь из «святых» кирпичей

В 1919 г. геолог Н.Н. Урванцев обнаружил в Норильске остатки медеплавильной печи. Выяснилось, что она построена еще в 1872 г. купцом Сотниковым. О том, что на Таймыре есть руда, во второй половине прошлого века уже знали, но строительные материалы, особенно кирпич, обходились там очень дорого.

Предприимчивый купец добился от губернатора разрешения на строительство в Дудинке деревянной церкви. В губернаторской канцелярии, естественно, не знали про то, что в Дудинке уже есть церковь, но не деревянная, а каменная. Сотников получил лес и действительно построил из него церковь, а старую – разобрал и из «святых» кирпичей выстроил медеплавильную печь. На ней было выплавлено несколько сот пудов меди.

Так на 69-й параллели появилось первое металлургическое предприятие, которое можно считать «прадедушкой» известного всему миру Норильского горно-металлургического комбината.

Первая электролитическая

Первый в России цех электролитического рафинирования меди был построен на Калукептском заводе (Азербайджан).

«Делаются довольно удачные опыты получения чистой меди путем электролиза прямо из купферштейна; почисловые данные, а также подробности производства заводоуправление держит в тайне. На Калакентском заводе, где есть запас живой силы воды, делаются теперь грандиозные приготовления для электролиза, причем дпнамоэлектромашина Вернера Сименса будет приводиться в движение при помощи турбины».

Так сообщал об этом старейший в России научный «Горный журнал» в 1887 г.

«Дразнят» медь

Электролитическому рафинированию меди обычно предшествует огневое. Его проводят в небольшой печи, отапливаемой нефтью, газом или угольной пылью. В печь вдувается воздух, который окисляет небольшую часть металла до закиси Сu2О. Многие примеси, имеющие большее, чем медь, сродство к кислороду (железо, кобальт, сера, мышьяк), после расплавления металла отнимают кислород у закиси меди и всплывают на поверхность в виде шлака.

Но вместо старых примесей появляется новая – часть закиси меди остается непрореагировавгаеи, л чтобы удалить ее, медь «дразнят». Делается это так: в ванну с расплавленным металлом опускают свежеспиленное бревно. Ванна начинает бурлить. Кроме паров воды из бревна выделяются и продукты сухой перегонки древесины. Некоторые из них (водород, окись углерода) реагируют с закисью меди и восстанавливают ее. Одновременно из расплава удаляется растворенный в металле сернистый газ.

На многих заводах вместо древесины в процессе «дразнения» используют мазут или природный газ.

Красная и черная

С кислородом медь реагирует очень легко, образуя два окисла – закись Сu2O красного цвета и окись СuО черного цвета. Но также легко медь и восстанавливается. Это нетрудно проследить по тому, как меняет цвет медная пластинка при переносе из восстановительной зоны пламени в окислительную и обратно. На этом свойстве основано применение меди в качестве катализатора при производстве некоторых органических соединений. Медь служит переносчиком кислорода.

Без воды – никак

Сульфат меди существует обычно в виде кристаллогидратов, его молекула связана с несколькими молекулами воды. В медном купоросе, например, на одну молекулу CuSO4 приходится пять молекул Н2O. Четыре из них при нагревании довольно легко отщепляются, но пятая удерживается очень крепко; чтобы оторвать ее, нужны очень высокие температуры. Безводный сульфат в отличие от кристаллогидратов имеет не синюю, а белую окраску. Он очень активно присоединяет воду и, естественно, при этом меняет цвет. Его применяют как реактив на присутствие воды в органических жидкостях. Если бензин, например, содержит хотя бы немного растворенной воды, то при добавлении безводного CuSO4 последний моментально синеет.

Медные «усы»

Известно, что практическая прочность всех металлов во много раз меньше теоретической. Причиной тому дислокации – нарушения в кристаллической структуре металлов. Медь не исключение среди них. Не будь дислокации, прочность меди измерялась бы сотнями (!) килограммов на квадратный миллиметр. И это не голая теория. Уже получены медные «усы» – нитевидные кристаллы, практически лишенные дислокации; их прочность на растяжение около 300 кг/мм2. Правда, диаметр этих кристаллов значительно меньше миллиметра – всего 1,25 мкм.

Медные «усы» получают так. В специальную печь помещают ванночку с химически чистым монохлоридом меди CuCl. Туда же подается тщательно очищенный водород. В печи поддерживается строго постоянная температура порядка 600°C. Происходит реакция 2СuСl + Н2 = 2Сu + 2HCl. Образующийся хлористый водород отводится в другой сосуд, где улавливается водой. Направленному росту кристалла способствует электрическое поле.

С увеличением размеров удельная прочность нитевидных кристаллов значительно уменьшается. Но несколько лет назад советским ученым И.А. Одингу и И.М. Копьевой удалось получить «усы» диаметром около 100 мкм из сплава железа и меди при восстановлении смеси FeCl2 и CuCl.

Цинк

Рассказ об элементе №30 – цинке – мы вопреки традиции начнем не с истории его открытия, а с самого важного его применения. Это тем более оправданно, что история цинка не отличается точностью дат. А по значению, это несомненно один из важнейших цветных металлов.

Свидетельством первостепенной важности цинка выступает его дешевизна: на мировом рынке (данные 1960 г.) цинк – третий от конца среди всех металлов. Дешевле его лишь железо и свинец. Дешевизна цинка – 0,29 доллара за килограмм – результат больших масштабов его производства. Ведь и карандаш, к примеру, сделать совсем не просто, но изготовляемые миллионами штук карандаши стоят копейки. Так и с циаком: не «хорош, потому что дешев», а «дешев, потому что хорош».

Цинк и сталь

Как бы громко ни называли наше время: «век полимеров», «век полупроводников», «атомный век» и так далее по сути дела мы не вышли еще из века железного. Этот металл по-прежнему остается основой промышленности. По выплавке чугуна и стали и сейчас судят о мощи государства. А чугун и сталь подвержены коррозии, и, несмотря на значительные успехи, достигнутые человечеством в борьбе с «рыжим врагом», коррозия ежегодно губит десятки миллионов тонн металла.

Нанесение на поверхность стали и чугуна тонких пленок коррозионно-стойких металлов – важнейшее средство защиты от коррозии. А на первом месте среди всех металлопокрытий – и по важности, и по масштабам – стоят покрытия цинковые. На защиту стали идет 40% мирового производства цинка!

Оцинкованные ведра, оцинкованная жесть на крышах домов – вещи настолько привычные, настолько будничные, что мы, как правило, не задумываемся, а почему, собственно, они оцинкованные, а не хромированные или никелированные? Если же такой вопрос возникает, то «железная логика» мигом выдает однозначный ответ: потому что цинк дешевле хрома и никеля. Но дело не в одной дешевизне.

Цинковое покрытие часто оказывается более надежным, нежели остальные, потому что цинк не просто механически защищает железо от внешних воздействий, он его химически защищает.

Кобальт, никель, кадмий, олово и другие металлы, применяемые для защиты железа от коррозии, в ряду активности металлов стоят после железа. Это значит, что они химически более стойки, чем железо. Цинк же и хром, наоборот, активнее железа. Хром в ряду активности стоит почти рядом с железом (между ними только галлий), а цинк – перед хромом.

Процессы атмосферной коррозии имеют электрохимическую природу и объясняются с электрохимических позиций. Но в принципе механизм защиты железа цинком состоит в том, что цинк – металл более активный – прежде, чем железо, реагирует с агрессивными компонентами атмосферы. Получается, словно металлы соблюдают правило солдатской дружбы: сам погибай, а товарища выручай... Конечно, металлы не солдаты, тем не менее, цинк выручает железо, погибая.

Вот как это происходит.

В присутствии влаги между железом и цинком образуется микрогальванопара, в которой цинк – анод. Именно он и будет разрушаться при возникшем электрохимическом процессе, сохраняя в неприкосновенности основной металл. Даже если покрытие нарушено – появилась, допустим, царапина, – эти особенности цинковой защиты и ее надежность остаются неизменными. Ведь и в такой ситуации действует микрогальванопара, в которой цинк принесен в жертву, и, кроме того, обычно в процессе нанесения покрытия железо и цинк реагируют между собой. И чаще всего царапина оголяет не само железо, а интерметаллическое соединение железа с цинком, довольно устойчивое к действию влаги.

Существен и состав продукта, образующегося при «самопожертвований» элемента №30. Активный цинк реагирует с влагой воздуха и одновременно с содержащимся в нем углекислым газом. Образуется защитная пленка состава 2ZnCO3 · Zn(OH)2, имеющая достаточную химическую стойкость, чтобы защитить от реакций и железо, и сам цинк. Но если цинк коррелирует в среде, лишенной углекислоты, скажем, в умягченной воде парового котла, то пленка нужного состава образоваться не может, и в этом случае цинковое покрытие разрушается намного быстрее.

Как же наносят цинк на железо? Способов несколько. Поскольку цинк образует сплавы с железом, быстро растворяя его даже при невысоких температурах, можно наносить распыленный цинк на подготовленную стальную поверхность из специального пистолета. Можно оцинковывать сталь (это самый старый способ), просто окуная ее в расплавленный цинк. Кстати, плавится он при сравнительно низкой температуре (419,5°C). Есть, конечно, электролитические способы цинкования. Есть, наконец, метод шерардизации (по имени изобретателя) применяемый для покрытия небольших деталей сложной конфигурации, когда особенно важно сохранить неизменными размеры.