Смекни!
smekni.com

Определение эквивалентной электропроводности уксусной кислоты при бесконечном разбавлении графич (стр. 2 из 4)

С другой стороны, сопротивление R можно выразить через Λ. Учитывая, что из (11) ρ = 1/х и из (5) х = см Λ, получаем из (2) выражение R=l/(хs) = l/(cмΛs). Из закона Ома

I = = Λ. (13)

Приравнивая правые части уравнений (12) и (13) и решая равенство относительно Λ, получаем

Λ= αF(u+ + u-) (14)

Для сильных электролитов α=1 и

Λ= F(u+ + u-) (15)

Произведения

Fu++ и Fu-- (16)

Называются подвижностями ионов; их размерность [λи] = См м моль -1. Например, в водном растворе при 298 К подвижности катионов К +, Ag+ и Mg2+ равны 73,5 · 104; 61,9 · 104 и 53,0 · 104 См м2 · моль-1 и подвижности анионов С1-1, SO42- и СН3СОО- - 76,3 104; 80,0 · 104 и 40,9 · 104 См м2 моль-1 соответственно.

Вводя значения λ+ и λ- в (14) и (15), получаем для слабых электролитов:

Λ= α(λ+ + λ-) (17)

и для сильных электролитов

Λ= λ+ + λ- (18)

Для предельно разбавленного раствора α = 1, поэтому

Λ = λ + λ (19)

где λ и λ - подвижности ионов при предельном разведении. Уравнение (19), справедливое как для сильных, так и для слабых электролитов, называется законом Кольрауша, согласно которому молярная электрическая проводимость при предельном разведении равна сумме подвижностей ионов при предельном разведении. Из уравнения (19) и (16) получаем:

Λ = F(u + u) (20)

где F – постоянная Фарадея; u и u - абсолютные скорости движения ионов при предельном разведении.

1.1.2. Эквивалентная электропроводность

Эквивалентная электропроводность λсм2/(г-экв Ом)вычис­ляется из соотношения:

(21)

где с — эквивалентная концентрация, г-экв/л.

Эквивалентная электропроводность — это элек­тропроводность такого объема (φ см3) раствора, в котором содержится 1 г-экв растворенного вещества, при­чем электроды находятся на расстоянии 1 см друг от друга. Учитывая сказанное выше относительно удельной электропроводности, можно представить себе погруженные в раствор параллельные электроды на расстоянии 1 см., имеющие весьма большую площадь. Мы вырезаем мысленно на поверхности каждого электрода вдали от его краев площадь, равную φ-см2. Электропроводность раствора, заключенного между выделенными поверхностями таких электродов, имеющими площадь, равную φ- см2, и есть эквивалентная электропроводность раствора. Объем раствора между этими площадями электродов равен, очевидно, φ-см3 и содержит один грамм-эквивалент соли. Величина φ, равная 1000/с см3/г-экв, называется разведением. Между электродами, построен­ными указанным выше способом, при любой концентрации электро­лита находится 1 г-экв растворенного вещества и изменение экви­валентной электропроводности, которое обусловлено изменением концентрации, связано с изменением числа ионов, образуемых грамм-эквивалентом, т. е. с изменением степени диссоциации, и с изменением скорости движения ионов, вызываемым ионной атмо­сферой.

Мольная электропроводность электролита — это произведение эквивалентной электропроводности на число грамм-эквивалентов в 1 моль диссоциирующего вещества.

На рис. 1 показана зависимость эквивалентной электро­проводности некоторых электролитов от концентрации. Из рисунка видно, что с увеличением с ве­личина λ уменьшается сначала резко, а затем более плавно.

Интересен график зависимо­сти λ от (2). Как видно

из графика (Рис. 2), для сильных электролитов соблюдается медленное линейное уменьшение λ с увеличением , что соответ­ствует эмпирической формуле Кольрауша (1900);

λ= λ - А (22)

где λ - предельная эквивалентная электропроводность при бесконечном раз­ведении: с → 0; φ → ∞

Значение λ сильных электролитов растет с увеличением φ и ассимптотически приближается к λ. Для слабых электролитов (СН3СООН) значе­ние λ также растет с увеличением φ, но приближение к пределу и величину предела в большинстве случаев практически нельзя уста­новить. Все сказанное выше касалось электропроводности водных растворов. Для электролитов с другими растворителями рассмот­ренные закономерности сохраняются, но имеются и отступления от них, например на кривыхλ-с часто наблюдается минимум (аномальная электропроводность).

2. Характеристика уксусной кислоты

У́ксусная кислота (эта́новая кислота) — органическое вещество с формулой CH3COOH. Слабая, предельная одноосно́вная карбоновая кислота. Производные уксусной кислоты носят название «ацетаты».

Уксусная кислота
Общие
Химическая формула CH3COOH
Молярная масса 60,05 г/моль
Физические свойства
Состояние (ст. усл.) бесцветная жидкость
Плотность 1,0492 г/см³
Термические свойства
Температура плавления 16,75 °C
Температура кипения 118,1 °C
Критическая точка 321,6 °C, 5,79 МПа
Молярная теплоёмкость (ст. усл.) 123,4 Дж/(моль·К)
Энтальпия образования (ст. усл.) −487 кДж/моль
Химические свойства
pKa 4,75
Оптические свойства
Показатель преломления 1,372

2. Физические свойства

Ледяная уксусная кислота Уксусная кислота представляет собой бесцветную жидкость с характерным резким запахом и кислым вкусом. Гигроскопична. Неограниченно растворима в воде. Смешивается со многими растворителями; в уксусной кислоте хорошо растворимы органические соединения и газы, такие как HF, HCl, HBr, HI и другие. Существует в виде циклических и линейных димеров

  • Давление паров (в мм. рт. ст.):
    • 10 (17,1 °C)
    • 40 (42,4 °C)
    • 100 (62,2 °C)
    • 400 (98,1 °C)
    • 560 (109 °C)
    • 1520 (143,5 °C)
    • 3800 (180,3 °C)
  • Диэлектрическая проницаемость: 6,15 (20 °C)
  • Динамическая вязкость жидкостей и газов (в мПа·с): 1,155 (25,2 °C); 0,79 (50 °C)
  • Поверхностное натяжение: 27,8 мН/м (20 °C)
  • Удельная теплоемкость при постоянном давлении: 2,01 Дж/г·K (17 °C)
  • Стандартная энергия Гиббса образования ΔfG0 (298 К, кДж/моль): −392,5 (ж)
  • Стандартная энтропия образования ΔfS0 (298 К, Дж/моль·K): 159,8 (ж)
  • Энтальпия плавления ΔHпл: 11,53 кДж/моль
  • Температура вспышки в воздухе: 38 °C
  • Температура самовоспламенения на воздухе: 454 °C
  • Теплота сгорания: 876,1 кДж/моль

Уксусная кислота образует двойные азеотропные смеси со следующими веществами.

Вещество tкип, °C массовая доля уксусной кислоты
четыреххлористый углерод 76,5 3 %
циклогексан 81,8 6,3 %
бензол 88,05 2 %
толуол 104,9 34 %
гептан 91,9 33 %
трихлорэтилен 86,5 4 %
этилбензол 114,65 66 %
о-ксилол 116 76 %
п-ксилол 115,25 72 %
бромоформ 118 83 %

·

  • Уксусная кислота образует тройные азеотропные смеси
    • с водой и бензолом (tкип 88 °C);
    • с водой и бутилацетатом (tкип 89 °C).

3. Получение

    Уксусную кислоту можно получить окислением ацетальдегидакислородом воздуха. Процесс проводят в присутствии катализатора — ацетата марганца (II) Mn(CH3COO)2 при температуре 50-60 °С:

2 CH3CHO + O2 → 2 CH3COOH

3. 1. В промышленности

3. 1. 1. Окислительные методы

Ранними промышленными методами получения уксусной кислоты были окисление ацетальдегида и бутана.

Ацетальдегид окислялся в присутствии ацетата марганца (II) при повышенной температуре и давлении. Выход уксусной кислоты составлял около 95 %.

Окисление н-бутана проводилось при температуре 150—200 °C и давлении 150 атм. Катализатором этого процесса являлся ацетат кобальта.

Оба метода базировались на окислении продуктов крекинга нефти. В результате повышения цен на нефть оба метода стали экономически невыгодными, и были вытеснены более совершенными каталитическими процессами карбонилирования метанола.

4. Химические свойства

Уксусная кислота обладает всеми свойствами карбоновых кислот. Связь между водородом и кислородом карбоксильной группы (−COOH) карбоновой кислоты является сильно полярной, вследствие чего эти соединения способны легко диссоциировать и проявляют кислотные свойства. В результате диссоциации уксусной кислоты образуется ацетат-ион CH3COO и протон H+. Уксусная кислота является слабой одноосновной кислотой со значением pKa в водном растворе равным 4,75. Раствор с концентрацией 1.0 M (приблизительная концентрация пищевого уксуса) имеет pH 2,4, что соответствует степени диссоциации 0,4 %.

Исследования показывают, что в кристаллическом состоянии молекулы образуют димеры, связанные водородными связями.

Уксусная кислота способна взаимодействовать с активными металлами. При этом выделяется водород и образуются соли — ацетаты.