Однако как эту соль, так и другие, образующиеся из нее путем замены аммония на другие катионы, часто называют просто солями Рейнеке. Свободную кислоту Н [Cr (NCS) 4 (NH3) 2], которая может быть получена при взаимодействии Ba [Cr (NCS) 4 (NH3) 2] 2 с разбавленной серной кислотой, также часто называют кислотой Рейнеке. В литературе даже встречается иногда и термин "рейнекат" ("рейнекеат"), применяемый для обозначения солей Рейнеке.
Пространственное строение данной соли было выяснено с помощью рентгеноструктурного анализа.
Оказалось, что молекулы аммиака расположены в транс-положении друг к другу[10]. В этой же работе было также показано, что в анионе соли Рейнеке роданогруппа связана с хромом через атом азота. [11]
Получены также производные иона тетрароданодиамминхрома (III), содержащие вместо одной роданогруппы остаток ОН-, т.е. соли типа М [Cr (NH3) 2 (NCS) 3OH]. Также получены диоксалатодиамминхромиаты типа Me [CrPy2 (NCS) 4] и другие аналогичные соли.
Как уже отмечалось, соль Рейнеке довольно широко применяется в аналитической химии, для определения ионов меди, серебра, ртути, кадмия и висмута образуя пучки тонких игл. На серебро, как правило, используют соль Рейнеке в сочетании с тиомочевинной, образуется осадок состава: [Ag (SCN2H4) 2] × [Cr (NH3) 2 (SCN) 4], предел обнаружения 0,4 мкг, предел разбавления 1: 2500 (г/г).
Также она применяется и в органическом анализе, например для определения никотина[12], атропина[13], морфина[14]:
Сведения о соединениях содержащих анион [Cr (NH3) 2 (NCS) 4] - достаточно ограничены, не смотря на то, что тетраизотиоцианатодиамминхроматные комплексы могут обладать рядом специфических свойств.
Многоядерные амминные комплексы хрома (III) содержат несколько центральных атомов хрома. В большинстве случаев они связаны между собой ОН-группами.
Важнейшими представителями двухъядерных комплексов являются так называемые родо- и эритрохромовые соли и соли ди-μ-гидроксодихрома (III).
Магнитные моменты биядерных комплексов зависят от температуры, а их значения несколько ниже, чем обычные для октаэдрического CrIII, что указывает на слабое антиферромагнитное взаимодействие через изогнутые мостики Cr-O (H) - Cr. Более сильное антиферромагнитное взаимодействие обнаружено у [ (NH3) 5Cr (μ-OH) Cr (NH3) 5] X5:
[ (NH3) 5Cr (μ-OH) Cr (NH3) 5] 5+
[ (NH3) 5Cr-O-Cr (NH3) 5] 4+красный синий
Линейный мостик Cr-O-Cr, очевидно, допускает спаривание d-электронов двух атомов металла посредством dπ-pπ - связей намного легче, чем изогнутый мостик Cr-O (H) - Cr.
Гидролизованные полиядерные комплексы CrIII имеют большое значение в промышленном получении красителей и дубильных веществ. В первом случае они служат протравкой для красителя. В производстве кожи необходимо обрабатывать шкуры животных для предотвращения гниения, чтобы они были мягкими после высушивания. После вымачивания в серной кислоте шкуры насыщают раствором, содержащим CrIII. Раствор постепенно делают щелочным, при этом образуются полиядерные комплексы и связывают мостиками соседние цепочки белков, в основном координируясь к их карбоксильным группам.
Магнитные свойства октаэдрических комплексов хрома (III) можно объяснить довольно просто. Во всех таких комплексах должно быть три неспаренных электрона независимо от силы поля лигандов, что подтверждается на опыте для всех известных одноядерных соединений. Далее, теория предсказывает, что значения магнитных моментов должны приближаться или быть несколько ниже чисто спинового значения. Это также подтверждается данными эксперимента.
Спектры комплексных соединений CrIII также легко поддаются теоретической интерпретации. Здесь возможны три перехода, разрешенные по спину, которые и наблюдаются у большинства комплексов.
Интересными должны быть магнитные свойства комплексных ацетатов хрома с 2,2-dipy и 1,10-phen. Поскольку карбоксилатам хрома (III) свойственно образование кластеров типа [Cr3O (Ac) 6H2O] +, здесь наблюдается понижение магнитных моментов по сравнению с только спиновыми.
От всех рассмотренных выше комплексов отличается производное нитрата фенантролинового комплекса Cr (phen) 2 (NO3) I2. Этой формуле отвечает пятерная координация центрального иона, и именно этим, очевидно, можно объяснить спектральные особенности, проявляющиеся в отсутсвии каких-либо признаков расщепления, характерного для искаженных октаэдрических полей. По-видимому, каждый атом хрома в катионе окружен двумя молекулами бидентатного лиганда, на внешней сфере - ионы йода, и взаимодействие спинов происходит через NO3-.
Конечно, аномалии магнитных свойств некоторых комплексов хрома обусловлены не только антиферромагнетизмом, но и другими факторами: спин-орбитальное взаимодействие, тетрагональное искажение и др.
Первоначальное возбуждение комплекса обычно приводит к заселению состояния посредством перехода, разрешенного по спину, поэтому механизм фосфоресценции включает безызлучательное превращение начального возбужденного состояния в другое возбужденное состояние, отличающееся по мультиплетности[16]. Это второе состояние действует как накопитель энергии, потому что переход в основное состояние запрещен по спину. Излучательный переход в основное состояние происходит медленно, так что фосфоресценция комплексов хрома, как и всех d-металлов может длиться в течение нескольких микросекунд или даже дольше. Известный пример фосфоресценции представляет собой рубин, в котором ионы Cr3+ замещают небольшую часть ионов Al3+ в оксиде алюминия. Каждый ион Cr3+ окружен октаэдрически шестью ионами O2-, и исходным возбуждением является разрешенный по спину процесс:
t2g2eg1 ← t2g3: 4T2g ← 4A2g и 4T1g ← 4A2g.
Поглощение наблюдается в зеленой и фиолетовой областях спектра и отвечает за красный цвет драгоценного камня (см. рис.5).
Интеркомбинационная конверсия на терм 2Egt2g3 - конфигурации происходит за несколько пикосекунд или быстрее. Это красное излучение добавляется к красному цвету, возникающего за счет поглощения зеленого и фиолетового цвета из белого света, и придает блеск драгоценному камню.
Подобная 2Е → 4А фосфоресценция может наблюдаться для многих комплексов хрома (III) в растворе. Испускание происходит всегда в красной области, и значения длин волн близки к длине волны излучения рубина. Терм 2Е принадлежит t2g3 - конфигурации, которая является основным состоянием, и сила поля лигандов не имеет значение.
Соединения хрома (III) инертны, т.е. реакции замещения в их растворах протекают с низкой скоростью. Инертные комплексы не удается синтезировать по реакциям обмена в водных растворах. Для получения инертных комплексов либо используют очень большой избыток лиганда, что, например, достигается проведением реакции аминирования непосредственно в жидком аммиаке:
CrCl3+6NH3 (ж)
[Cr (NH3) 6] Cl3либо проводят окислительно-восстановительную реакцию:
4 [Cr (NH3) 6] Cl2+2NH4Cl+O2=2 [ (NH3) 5Cr (OH) Cr (NH3) 5] Cl5↓+6NH3
Хром в степени окисления +4 имеет электронную конфигурацию d2. Все известные соединения хрома в этой степени окисления высокоспиновые, диамагнитные, содержащие связь металл-металл.
Соединения хрома (IV) часто выступают в роли интермедиатов при восстановлении хроматов (VI) или окисления солей хрома (III). Как правило, они обладают низкой устойчивостью и не имеют практического значения.
Известны комплексные фториды состава МCrF5 и М2CrF6. Они имеют магнитный момент порядка 3,1 μВ и построены из октаэдров [CrF6] 2-.
Степень окисления +5 для хрома неустойчива - в настоящее время известно около трех десятков соединений, лишь половина из которых способна существовать в водном растворе. Являясь интермедиатами, соединения хрома (V) могут быть зафиксированы методом электронного парамагнитного резонанса. Введение в раствор α-гидроксикарбоновых кислот позволяет стабилизировать ситуацию благодаря возникновению устойчивых хелатов (см. Рис.6).
Это используют для изучения механизмов реакций восстановления хроматов в водных растворах. Например, с помощью хелатных соединений было доказано, что реакция хромата (VI) с иодид-ионами протекает как последовательность трех одноэлектронных переносов: