Смекни!
smekni.com

Моделирования связи структура химических соединений молекулярные свойства и биологическая акти (стр. 6 из 7)

и
.

Оценка величин pi и qi осуществляется по конечному числу выборочных представителей образов в соответствующих классах:

,
,

где

— числа встречаемости i-го дескриптора в первом и втором классах, а
— объемы выборок в этих классах.

Отнесение химического соединения к соответствующему классу токсичности производилось в дипломном проекте по значениям

, где
— ошибка второго рода для k-го класса в зависимости от отношения правдоподобия l, а значение k, на котором достигается
, и является номером класса опасности.

Модель количественного прогноза

Количественный прогноз осуществлялся на основе неаддитивных моделей с использованием понятия о парциальных вкладах структурных элементов (дескрипторов). Используемые модели параметров, входящих в сртуктурно-неаддитивные модели имеют вид

,

где fk — парциальный вклад k-х дескрипторов в параметр f, d­k — доля k-х структурных элементов в молекуле

.

В нашем случае в качестве параметра f использовался нормированный показатель токсичности

,

где M есть молекулярная масса молекулы. В каждом из классов опасности строились оптимальные регрессионные уравнения, в которых величины fk определялись исходя из экспериментальных данных устойчивым методом наименьших квадратов, а также при помощи сингулярного разложения матрицы (п.4.3.1).

Алгоритм сингулярного разложения матрицы и приближенного решения алгебраических систем линейных уравнений

При описании различных моделей могут возникать системы линейных алгебраических уравнений с прямоугольными и вырожденными квадратными матрицами. Для систем линейных алгебраических уравнений, не обладающих решением с классической точки зрения, вводят понятие обобщенного решения [9]. Под обобщенным решением (псевдорешением) системы линейных алгебраических уравнений

Ах = b, (4.3.1.I)

где А – матрица с размерами m x n, b – заданный вектор, x – искомый вектор, понимают вектор u, удовлетворяющий условию

, (4.3.1.II)

где || || - евклидова норма.

Если система (4.3.1.I) имеет классическое решение, то оно совпадает с обобщенным, и при этом

. Однако, нахождение векторов, минимизирующих функционал невязки
, имеет смысл и в отсутствии классического решения системы (4.3.1.I). Поэтому введение определения обобщенного решения существенно расширяет понятие искомого решения системы (4.3.1.I).

В работе Воеводина В.В. "Линейная алгебра" доказано, что для системы (4.3.1.I) всегда существует множество псевдорешений, а если рассмотреть так называемое нормальное псевдорешение, то есть решение с минимальной евклидовой нормой, то оно еще и единственно.

Для решения системы (4.3.1.I) в дипломной работе было использовано специальное представление матрицы, называемое сингулярным разложением. Известно, что любую действительную матрицу с размерами m x n можно представить в виде

, (4.3.1.III)

где матрица U (m x m) сформирована из m ортонормированных собственных векторов матрицы AAT, матрица V (n x n) — из n ортонормированных собственных векторов матрицы ATA, матрица S с размерами m x n имеет вид

, или
, при
[9].

Диагональные элементы si являются неотрицательными значениями квадратных корней из общих собственных значений матриц AAT и ATA и называются сингулярными числами матрицы А. Если сингулярные числа упорядочены, то такое разложение называется сингулярным разложением матрицы А.

Зная сингулярное разложение, можно сразу выписать решение системы (4.3.1.I):

где A#=VS#UT называется псевдообратной к А матрицей.

.

Преобразование прямоугольной матрицы А к двухдиагональному виду [11], [14]

Первым этапом нахождения сингулярного разложения матрицы А является ее численное приведение при помощи преобразований Хаусхолдера к двухдиагональному виду. Рассмотрим это преобразование.

Умножая слева и справа исходную матрицу А соответственно на специально подбираемые матрицы отражения P(k) и Q(k), приходят к верхней двухдиагональной форме

.

Процесс преобразования осуществляется по формулам

Матрицы отражения P(k) и Q(k) следует выбирать так, чтобы были выполнены условия

В этом случае матрицы P(k), Q(k) будут иметь вид

Знак перед

в выражениях для
и
следует выбирать таким же, как и знаки
и
соответственно.

Окончательно введя обозначения

можно записать

.

Здесь P и Q — ортогональные матрицы. При таком преобразовании сингулярные числа матрицы J(0) совпадают с сингулярными числами матрицы А.

Сингулярное разложение двухдиагональной матрицы

Следуя [17], изложим алгоритм сингулярного разложения двухдиагональной матрицы. С помощью так называемого QR-метода можно привести двухдиагональную матрицу J(0) к диагональной форме D, так что выполняется последовательность преобразований

(4.3.1.IV)

где S(i) и T(i) — ортогональные матрицы, которые выбирают так, чтобы J(i+1) сохраняли свою двухдиагональную форму, а симметричная трехдиагональная матрица J(i)TJ(i) стремилась к диагональному виду.

Для удобства опустим индексы и введем следующие обозначения:

Переход

осуществляется с помощью последовательности преобразований вращения. Таким образом,

. (4.3.1.V)

Здесь Sk и Tk — элементарные матрицы вращения вида

,

причем

Для общего случая коэффициенты c и s вычисляются по формулам Гивенса

где ai,j — вытесняемый элемент.

Очевидно, что умножение справа на матрицу вращения изменяет лишь (k-1) и k столбцы матрицы, а умножение слева на матрицу вращения — лишь (k-1) и k строки. Формулы преобразования для столбцов имеют вид

для строк