13) материал прокладки – полиэтилен ПВД;
14) длина пути потока (лабиринта)
(см)15) длина канальца распределения
(см)16) диаметр распределительного коллектора в аппарате
(см);17) коэффициент экранирования мембраны лабиринтносетчатой прокладки (полезная площадь)
;18) солесодержание опресненной воды 1000мг/л=1г/л.
Расчет будем вести в следующей последовательности[3].
1.Сиепень опреснения исходной воды на установке
2.Ионная сила раствора
3.Среднее солесодержание
4.Степень допустимого концентрирования солей в рассольных камерах при циркуляции рассола
5.Концентрация солей в рассоле может быть доведена до
6.Необходимое солеудаление (снижение общего солесодержания с 1418 до 1000 мг/л)
7.Количество электричества, которое нужно пропустить через электродиализатор для удаления из воды рассчитанного количества солей
8.Отношение концентрации рассола и дилюата в конце длины пути (лабиринта) потока электродиализном аппарате
9.Ширина потока воды в прокладке (лабиринте) электродиализного аппарата
10.Число дилюатных (рассольных) камер или соответственно число рабочих ячеек в электродиализном аппарате
11.Необходимая площадь катионитовых (анионитовых) мембран в одном аппарате
Аппарат АЭ-25 с пропускной способность до 25(м3/ч) имеет 300 катионитовых (анионитовых) мембран с
.12.Эквивалентная электрическая проводимость исходной воды
13.Толщина диффузионного слоя
14.Критические условия работы электродиализного аппарата
15.Падение напряжения на одну электродиализную ячейку аппарата
16.Напряжение на электродиализном аппарата, необходимое для поддержания средней плотности тока в ячейке
17.Срелняя концентрация дилюатта по длине
18.Средн плотность тока в ячейке
19.Потери напора в камере (дилюатной или рассольной)
20.Потери напора в местных сопротивлениях в камере (дилюатной или рассольной)
21.Полные потери напора в камере
21.Расход электроэнергии на обработку воды в электродиализной установке
На деминерализацию
На подачу дилюата и рассола электродиализный аппарат
Суммарный на обработку 1 м3 воды
.Из всех компонентов окружающей среды вода - жизненно необходимый продукт. Для нее нет заменителей. Все регионы в достаточной степени обеспечены водой. Однако возможность свободного ее использования на нужды промышленного производства и обеспечение населения качественной питьевой водой являются приоритетными социально-экономическими проблемами. Естественными источниками водоснабжения централизованных систем водоснабжения населенных мест и промышленных предприятий являются подземные и поверхностные воды. В России характерно использование главным образом подземных вод для водоснабжения городов и сельских населенных мест. Подземные воды обычно имеют постоянный состав и температуру, низкое содержание органических веществ, значительную минерализацию, высокое содержание растворенных газов, железа и марганца и при этом достаточную санитарную надежность. Исключение здесь составляют подземные воды верхних незащищенных горизонтов, забираемые из шахтных колодцев в основном в сельской местности. Только в двадцатом веке на основе достижений физической и коллоидной химии, биохимии, физики, гидравлики и общей теории процессов и аппаратов стала интенсивно развиваться технология улучшения качества воды. Природные воды представляют собой сложную многокомпонентную динамическую систему, в состав которой входят минеральные соли, молекулярные и коллоидные органические вещества, газы, диспергированные примеси, гидробионты, бактерии и вирусы. Во взвешенном состоянии в природных видах содержатся глинистые, песчаные, гипсовые и известковые частицы. В коллоидном состоянии - различные вещества органического происхождения, кремниевая кислота, гидроокись железа, гуматы и фульвокислоты. В истинно растворенном состоянии - в основном минеральные соли. Концентрация отдельных примесей в воде определяет ее свойства и качество. Требования к качеству природных вод могут быть самыми различными и зависят от целевого назначения вод. Различают воду, используемую для хозяйственно-питьевые нужды, в отраслях пищевой промышленности, а также для технологических целей промышленности. Хозяйственно-питьевая вода должна быть безвредна для здоровья человека, иметь хорошие органолептические показатели и быть пригодной для использования в быту. Вода для технологических нужд промышленности в зависимости от ее целевого использования должна отвечать самым разнообразным требованиям.
1. Водоподготовка. Процессы и аппараты. Под ред. О. И. Мартыновой. Учебное пособие для вузов. – М.: Атомиздат, 1977. – 352 с.
2. Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. – Л.: Химия, 1976. – 552 с.
3. Ривкин С. Л., Александров А. А. Теплофизические свойства воды и водяного пара. – М.: Энергия, 1980. – 424 с.
4. Слесаренко В. Н. Дистилляционные опреснительные установки. – М.: Энергия, 1980. – 248 с.
[1] Водоподготовка. Процессы и аппараты. Под ред. О. И. Мартыновой. Учебное пособие для вузов. – М.: Атомиздат, 1977. – 352 с.
[2] Водоподготовка. Процессы и аппараты. Под ред. О. И. Мартыновой. Учебное пособие для вузов. – М.: Атомиздат, 1977. – 352 с.
[3] Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. – Л.: Химия, 1976. – 552 с.