Смекни!
smekni.com

Современное состояние нефтехимического синтеза Основные продукты и технологии (стр. 2 из 3)

Условия проведения риформинга являются результатом компромисса между требованиями термодинамики (повышение температуры и снижение давления для увеличения равновесной конверсии метана), экономики и материаловедения. При высокой температуре (800-900 ºС) и не слишком высокой давлении (1-3 МПа) термодинамика процесса благоприятна, что позволяет довести реакцию до превращения, близкого к полному. Достигнутый компромисс приводит к тому, что в процессе синтеза метанола стадия риформинга требует примерно 2/3 капитальных вложений и более половины эксплуатационных расходов. Это обстоятельство обусловило поиск новых путей превращения природного газа в синтез-газ.

Прямое газофазное селективное окисление метана в СО и Н2, т.е. в синтез-газ (реакция 3), явилось бы наиболее простым из альтернативных методов, однако селективность этого процесса в удобных для практики условиях низка (на уровне 50%). Высокая селективность может быть достигнута при высоких температурах (ок. 1500 К), когда равновесие благоприятно именно для образования синтез-газа. Однако проведение процесса при таких температурах сопряжено с рядом трудностей, обусловленных очень жесткими требованиями к материалу реактора, контактирующего с коррозийно активной средой при высокой температуре, и сложностью управления процессом, поскольку закономерности горения "богатых" смесей относительно мало изучены.

Возникает также вопрос, что использовать в качестве окислителя. Если окислять метан чистым кислородом, возрастают капиталовложения и стоимость синтез-газа, а если использовать воздух, то получается "бедный" синтез-газ низкого качества с большим содержанием азота (не менее 50-60% об.).

В последние годы появилось несколько отечественных разработок, в которых предлагаются новые решения аппаратурного оформления процесса высокотемпературного селективного окисления природного газа в синтез-газ.

Синтез метанола.

Промышленный синтез метанола из синтез-газа до 60-х гг. прошлого века базировался на цинкхромовых катализаторах, несмотря на относительно низкую селективность и довольно жесткие условия процесса (температура 400 ºС и давление 30 МПа). Промышленное применение высокоселективных медьсодержащих катализаторов задержалось из-за их повышенной чувствительности к отравлению соединениями серы и стало возможным лишь после развития методов сероочистки. Начиная с 1960-х гг., технология высокоселективного синтеза метанола с использованием медьсодержащих катализаторов, в первую очередь Cu-Zn-Al-оксидных, введенных в промышленную практику фирмой ICI и "HaldorTopsoe", в СССР – СНМ.

Современные катализаторы синтеза метанола близки к идеалу, если не считать постепенной из дезактивации в ходе эксплуатации и высокой чувствительности к каталитическим ядам. Они позволяют осуществлять процесс при относительно низкой температуре (220-280 ºС) и умеренном давлении (5-10 МПа) и обеспечивают высокую селективность – содержание суммы примесей в метаноле обычно не превышает 0,1 %.

Новые перспективы совершенствования технологии производства метанола выявились в результате исследований механизма процесса и последующего перехода к теоретическим кинетическим моделям, базирующимся на механизме реакции. Первый принципиальный шаг в этом направлении был сделан более четверти века назад, в 1975 г., когда независимо кинетическим и изотопным методами было доказано, что метанол на медьсодержащих катализаторах образуется путем гидрирования СО2, но не СО. Было установлено, что общепринятая к тому времени реакция:

СО+2Н2=СН3ОН (7)

на этих катализаторах вообще не протекает, а в условиях синтеза метанола основную роль играют две реакции:

собственно синтез метанола

СО2+3Н2=СН3ОН+Н2О (8)

и конверсия СО водой (реакция водяного пара)

СО+Н2О=СО2+Н2 (9)

Аналогичный механизм процесса образования метанола реализуется на цинкхромовых катализаторах.

На железных катализаторах (и, вероятно, на палладиевых) ситуация противоположная: почти весь метанол образуется за счет гидрирования СО и лишь 0,2 % - за счет гидрирования СО2.

Дегидратация метанола в диметиловый эфир.


Кинетика дегидратации метанола в диметиловый эфир:

2СН3ОН=СН3ОСН3+Н2О

изучалась в ряде работ, однако предложенные кинетические уравнения фактически давали лишь эмпирическое описание процесса. Важная информация о механизме реакции дегидратации метанола следует из данных работы В.А. Махлина и С.И. Иванова. Ниже приведены результаты, полученные ими в очень простом эксперименте при подаче в проточный реактор импульсов метанола в потоке гелия на слой катализатора γ-Al2O3, содержащий прочно адсорбированную воду (табл. 1).

Таблица 1 Результаты исследования реакции дегидратации метанола в диметиловый эфир на γ-Al2O3 импульсным методом

Количество метанола в импульсе, ммоль Количество продуктов на выходе из реактора, ммоль ДМЭ метанол вода
0,052 --------- --------- 0,098
0,062 --------- 0,001 0,042
0,050 0,013 0,003 0,026
0,055 0,017 0,003 0013
0,053 0,010 0,004 0,013
0,162 0,179 0,017 0,038

Как видно, первый импульс метанола не приводит к образованию ДМЭ. В газовой фазе появляются лишь две молекулы воды на каждую молекулу поглощенного метанола. Близкая картина наблюдается при пуске второго импульса, хотя количество выделяющейся воды снижается. При подаче последующих трех импульсов образуется небольшое количество ДМЭ и выделяется столь же небольшое количество воды, при этом метанола на выходе из реактора (слой катализатора) не обнаруживается, он постепенно накапливается на поверхности сорбента. Наконец, при шестом импульсе концентрация метанола резко увеличивается в газовой фазе вплоть до выхода его из реактора.

Проведенный опыт привел к принципиально важному результату: количество полученного диметилового эфира намного превышает количество поданного в импульсе метанола. Более того, практически весь метанол, оставшийся на поверхности сорбента в ходе предыдущих импульсов, превращается в ДМЭ. При этом количество выделяющейся воды невелико и намного меньше, чем это следовало бы согласно стехиометрии реакции.

2.2 Одностадийный синтез ДМЭ из синтез-газа и синтез бензина (через ДМЭ)

Рассмотренную выше схему 2 нельзя считать полностью оптимальным решением. Синтез метанола характеризуется неблагоприятной термодинамикой, что резко ухудшает технико-экономические показатели процесса по схеме 2. Напрашивается решение – объединить процессы синтеза метанола и его дегидратации, выводя таким образом метанол из зоны реакции. В этом случае протекают три экзотермические реакции:

синтез метанола

СО2+3Н2=СН3ОН+Н2О (+49,8 кДж/моль) (8)

дегидратация метанола

2СН3ОН=(СН3)2О+Н2О (+23,4 кДж/моль) (9)

конверсия СО водой (реакция водяного пара)

СО+Н2О=СО2+Н2 (+40,9 кДж/моль) (10)


Ключевой реакцией в приведенной совокупности (8) – (10) является синтез метанола. Образующийся в реакции (8) метанол и вода превращаются в двух последующих реакциях. В противоположность синтезу метанола, равновесие двух последних реакций сдвинуто вправо. Именно поэтому сочетание указанных трех реакций в едином реакционном пространстве оказывается исключительно благоприятным, во всяком случае для газофазного процесса, и позволяет на порядок повысить производительность катализатора синтеза метанола. Удаление воды из зоны реакции благоприятно с позиций не только термодинамики, но и кинетики процесса, так как вода тормозит синтез метанола.

Указанный подход позволяет получить оптимизированную схему переработки природного газа в ДМЭ, включающую прямой синтез ДМЭ из синтез-газа (схема 3).

Схема 3 Двухстадийный синтез диметилового эфира из природного газа

2.3 Нетрадиционные процессы и технологии получения моторных топлив

В Институте катализа СО РАН разработан ряд нетрадиционных процессов и технологий получения высококачественных бензинов и дизельных топлив на основе различных углеводородных фракций – средних нефтяных дистиллятов, газовых конденсатов, широкой фракции легких углеводородов и легких углеводородных газов.


2.3.1 Технология БИМТ (Боресков Институт Моторные Топлива) –одностадийная переработка средних нефтяных дистиллятов и газовых конденсатов

Данная технология позволяет получать высокооктановые бензины, зимнее дизельное топливо и сжиженный газ С3-С4. Процесс проводится на цеолитном катализаторе ИК-30-БИМТ, не содержащем благородных металлов, в реакторах со стационарным слоем катализатора при температуре 350-450 ºС и давлении до 20 атм. Сырьем могут быть прямогонные нефтяные фракции (начало кипения 35-350ºС) или нестабильные газовые конденсаты без предварительной их разгонки. Содержание общей серы в сырье не лимитируется. Длительность межрегенерационного пробега катализатора в режиме подъема температуры составляет 150-280 ч в зависимости от рабочих параметров процесса и состава получаемых продуктов.

Данная технология имеет ряд существенных преимуществ перед стандартной технологией переработки нефти. По стандартной схеме нефть поступает в блок первичной перегонки, где она разделяется на бензиновую, керосиновую, дизельную фракции, тяжелый вакуумный газойль и гудрон. Каждая из этих фракций далее подвергается облагораживанию по своей технологической схеме. Так, например, для производства высокооктанового бензина (схема 4) прямогонный бензин подается на гидроочистку и далее одна часть направляется на риформинг для получения рафината (концентрат ароматических углеводородов), а другая часть – на стадию алкилирования. Путем компаундирования получают высокооктановый бензин. В случае получения зимнего дизельного топлива прямогонная дизельная фракция должна пройти стадии гидроочистки и депарафинизации.