Смекни!
smekni.com

Методика обработки экспериментальных данных (стр. 2 из 3)

В дальнейшем рассчитывалась сумма состояний жесткого ротатора

и вклад в энтропию, обусловленный вращением молекулы как целого

где s – число симметрии молекулы, h – постоянная Планка, k – постоянная Больцмана.

На основании полученных ранее сведений об изменении энергии молекулы при вращении каждой из ее групп рассчитывался вклад в энтропию от смешения конформеров

гдеm – общее количество конформеров (в нашем случае учитывались все состояния, полученные при повороте волчка от 0о до 350о с шагом 10о, то есть m=36∙n, где n– число вращающихся групп в молекуле), xi – мольная доля каждой конформации

где n– число вращающихся групп в молекуле, m – количество конформеров, Ei – энергия молекулы в данном состоянии равная

, где
- исходное значение энергии,
- наименьшая энергия молекулы, полученная при вращении всех возможных волчков.

Расчет вклада в энтропию, обусловленного колебательным движением производился следующим образом.

где νi – частота из принятого к расчету набора, m – количество частот в наборе. Из полного набора частот колебательного спектра исключены крутильные колебания, соответствующие вращению групп, участвующих в расчете вклада в энтропию от заторможенного вращения, таким образом

, где n – число атомов в молекуле, ntop – число волчков. При отсутствии надежных методик определения крутильных колебаний в спектре нами применялась приближенная оценка типов колебаний с использованием режима Animateпрограммы HyperChem 5.0.

здесь n – число максимумов потенциальной кривой барьера вращения группы, s– число симметрии группы (подходы к определению чисел симметрии вращающихся групп были рассмотрены в главе 1), Sfr – энтропия свободного вращения волчка,

- разность между энтропиями свободного и заторможенного вращения, определяемая по таблицам Питцера и Гуинна [21] как функция
и
, где Vo – эффективный барьер вращения волчка, Qfr – статистическая сумма по состояниям свободного внутреннего вращения.

Величина эффективного барьера вращения принималась равной

, где
- зависимость изменения потенциальной энергии молекулы от угла поворота волчка φ. Для расчета Vo полученные методом молекулярной механики значения потенциальной энергии молекулы при заданных значениях угла поворота волчка описывались с помощью кубического сплайна, затем полученный сплайн интегрировался по методу Симпсона.

Статистическая сумма по состояниям свободного внутреннего вращения рассчитывалась как

, где Iпр – приведенный момент инерции волчка, который рассчитывался в соответствии со следующей процедурой [105].

Для вращающейся группы вводится координатная система с осями x, y, z, расположенными следующим образом: ось z совпадает с осью вращения волчка, ось x проходит через центр масс волчка и перпендикулярна оси z, ось y проходит через точку пересечения осей x, z и перпендикулярна к ним. Атомы волчка, лежащие на оси z из дальнейшего рассмотрения исключаются. Далее производится расчет следующих величин:

- момент инерции волчка относительно оси z,
и
- произведения моментов инерции,
- фактор несбалансированности волчка.

Затем находятся направляющие косинусы осей x, y, z относительно главных центральных осей 1, 2, 3 инерции молекулы. Направление осей выбирается таким образом, чтобы обе системы координат были или правыми или левыми. При этом должно соблюдаться условие равенства единице определителя матрицы направляющих косинусов, то есть

что может использоваться для проверки правильности определения направляющих косинусов.

Приведенный момент инерции рассчитывается следующим образом:

где

. Здесь r(i) – проекции на главные оси инерции молекулы вектора, направленного из центра тяжести молекулы в центр координат волчка, индекс i принимает значения 1, 2, 3 в циклическом порядке, то есть при i=1 индекс i-1 равен 3, а индекс i+1 при i=3 равен 1.

В ходе анализа для изучения влияния каждого из энтропийных вкладов на константу равновесия рассматривался следующий ряд величин, получаемых при последовательном исключении из исходной константы равновесия Kx каждого из обозначенных ранее энтропийных вкладов:

1. Бессимметрийная константа равновесия в жидкой фазе -

2. Бессимметрийная константа равновесия в газовой фазе -

3.

с исключенным вкладом на вращение молекулы как целого -

4. “Существенная” газофазная константа равновесия, полученная после исключения из

вклада на смешение конформеров -

5.

с исключенным вкладом от колебательного движения -

6.

после исключения вклада на внутреннее вращение -

Значения энтропийных вкладов и констант равновесия для изученных превращений приводится в табл. 5.1.

Одной из целей данной работы является совершенствование подхода к прогнозированию химического равновесия в реакциях позиционной изомеризации алкилароматических углеводородов и их функциональных производных. При прогнозировании констант равновесия с использованием уравнения

(4.1)

необходима как можно более достоверная информация об энтальпии и изменении энтропии реакции. При этом экспериментальные данные по указанным свойствам не охватывают весь набор веществ, представляющих практический и теоретический интерес. Таким образом, при прогнозировании приходится прибегать к расчетным методам.

Расчет энтальпии реакции, как правило, производится при помощи аддитивных методов с учетом эффектов взаимодействия заместителей, полученных на основе экспериментальных калориметрических данных.

Использование аддитивных методов при прогнозировании энтропии веществ более проблематично по причине особой природы этого свойства, несмотря на то, что такие методы развиты и применяются при массовых расчетах термодинамических свойств органических веществ [50, 111]. Лучшим, на наш взгляд, подходом является расчет изменения энтропии реакций в соответствии с методами статистической термодинамики [21, 105, 106, 112], где свойство представляется в виде суммы вкладов различных видов движения молекул:

. (4.2)