Смекни!
smekni.com

Шпаргалка по химии 2 (стр. 4 из 7)

25. Комплексные соединения, комплексообразователи, лиганды, коордиционное число. Классификация.

Комплексные соединения - сложные вещества, состоящие из центрального атома (комплексообразователя) и связанных с ним молекул или ионов (лигандов). Центральный атом и лиганды образуют внутреннюю сферу комплекса, которую при записи заключают в квадратные скобки.

Число лигандов, окружающих центральный атом, называется коордиционным числом комплекса. Ионы, окружающие комплекс, образуют внешнюю сферу комплекса. Связи во внутренней сфере образованы по донорно-акцепторному механизму (центральный атом – акцептор, лиганды – доноры электронов), связь между внутренней и внешней сферами комплекса – ионная. Заряд комплекса численно равен суммарному заряду внешней сферы и противоположен ему по знаку.

Различают катионные, анионные и нейтральные комплексы. Комплекс с положительным зарядом называют катионным, например [Cu(NH3)4]2+, с отрицательным зарядом – анионным, например [Cd(CN)4]2-, с нулевым зарядом – нейтральным, например Fe(CO)5.

Заряд комплексообразователя равен и противоположен по знаку алгебраической сумме зарядов всех остальных ионов.

Комплексные, или координационные, соединения относятся к многочисленному классу соединений, в состав которых могут входить как неорганические, так и органические соединения в виде нейтральных или заряженных частиц. По своей многочисленности они занимают второе место после органических соединений. CuSO4+2NaOH= Cu(OH)2+Na2SO4

Cu(OH)2 + 4NO3= Cu(OH)2* 4NH3
(голубой осадок) (раствор василькового цвета)

Такие соединения называются соединениями высшего порядка, или комплексными.
Современная координационная химия связана с именем швейцарского химика А. Вернера, сформулировавшего основные положения координационной теории (1893 г.).По этой теории центром комплексного соединения является ион метала, как правило, d - элемента, реже p - элемента. Центральный ион (атом) комплексного соединения называется комплексообразователем. Координационными называют соединения, содержащие в одном из агрегатных состояний группу ионов или нейтральных молекул (лигандов), в определенном порядке размещенных (координированных) вокруг атома (иона) - комплексообразователя).

Лигандами могут быть нейтральные молекулы (NH3, H2O, CO), кроме того, лигандами являются различные анионы, различные кислотные остатки (OH-, Ce-, NO2-).Число, стоящее за круглыми скобками, называется координационным числом. Координационное число показывает, какое количество лигандов координирует вокруг себя данный комплексообразователь. Таким образом, комплексообразователь имеет две характеристики:

заряд,координационное число.

Комплексообразователь Заряд Координационное число
H 1 2
Cu 2 4
Bi 3 4

Комплексообразователь с лигандами образуют (внутреннюю сферу комплексного соединения).

Заряд комплексного иона представляет собой алгебраическую сумму зарядов комплексообразователя и лигандов.

Классификация комплексных соединений Комплексные соединения подразделяются на электролиты и неэлектолиты.
Комплексные неэлектролиты:

[Fe(SCN)3]0 - тритиоциано железа (3);
[Cr(H2O)3Cl3]0 - триакватрихлоро хрома( 3).

Последнее соединение называется неоднородным комплексным соединением, так как комплексообразователь координирует вокруг себя различные лиганды.

Комплексообразователь Заряд Координационное число
Сr 3 6

Комплексные электролиты подразделяются на кислоты, гидроксиды и соли. H[AuCl3] - трихлорозолотая кислота.
H2[PtCl6] - гексахлороплатиновая кислота.

[Cu(NH3)4](OH)2- гидроксид тетрааммин меди (2).

[Ni(NH3)6]SO4- сульфат гексааммин никеля (2).

Комплексные соединения классифицируются по виду лигандов.

Если лигандами служат молекулы аммиака, комплексные соединения называются аминокомплексами. Если лигандами служат молекулы H2O, то комплексные соединения называются аквакомплексами. Если лиганды - ОН, то комплексные соединения называются гидрокомплексами. Если лигандами служат любые кислотные остатки, то комплексные соединения называются ацидокомплексами.

Диссоциация комплексных соединений и ионовМежду ионом внешней и внутренней сфер возникает ионная связь, поэтому комплексные соединения диссоциируют на ионы необратимо:K3[Fe(CN)6]=3K++[Fe(CN)6]3-.Между комплексообразователем и лигандами возникает донорно-акцепторная связь (комплексообразователь - акцептор, лиганды - доноры), поэтому комплексный ион диссоциирует как слабый электролит:[Fe(CN)6]3- ↔Fe3+ +6CN-Диссоциация комплексных ионов имеет количественную характеристику - константу нестойкости (Кн):

В зависимости от константы нестойкости комплексные ионы подразделяются на нестойкие, устойчивые, очень устойчивые.
Кнест 10-1÷10-3 10--4÷10-20 <10-20
Устойчивостьком. ионов Нестойкие Устойчивые Очень устойчивые
Способ разрушения Разбавлением раствора Химическим воздействием на лиганды Практически неразрушимы

Чтобы разрушить комплексный ион, необходимо сместить его равновесие в прямом направлении. Так как при разбавлении растворов диссоциация усиливается, для разрушения неустойчивых комплексных ионов достаточно разбавить раствор водой. Устойчивые комплексные ионы разрушают химическим воздействием, либо на комплексообразователь, либо на лиганды. Это означает, что или комплексообразователь, или лиганды надо удалить из раствора в виде более труднорастворимого соединения, чем разрушаемый комплексный ион. Например, надо разрушить устойчивый ион[Ag(NH3)2]+, имеющий Кн = 10-8.
Если на раствор, содержащий данный ион, воздействовать раствором иодида калия, то ионы серебра будут удалены из раствора в виде AgI, имеющего произведение растворимости, равное 10-17. Если воздействовать азотной кислотой, то лиганды, молекулы NH3, будут связаны в комплексный ион [H(NH3)]+, константа нестойкости которого равна 10-14. В обоих случаях понизится концентрация продуктов реакции:[Ag(NH3)2]+ ↔Ag+ +2NH3 и по принципу Ле-Шателье равновесие реакции сместится в прямом направлении, в сторону разрушения комплексного иона. Процессы комплексообразователя широко используются в аналитической химии. При выборе условий наиболее эффективного разделения ионов исходят из соотношения констант нестойкости образуемых ими комплексных соединений.

26. Основные понятия термодинамики: система, работа, энергия, теплота.

Системой называется совокупность находящихся во взаимодействии веществ или частиц, мысленно или фактически обособленная от окружающей среды.

Системы бывают открытыми (возможен обмен массы и энергии), закрытыми (обмен энергией), изолированными (никакой обмен не возможен).

Работа – это количественная мера направленного движения частиц, мера энергии передаваемой от одной системы к другой под действием воздействующих сил.

Энергия – общее количественная мера движения взаимодействия всех видов материи.

Теплота – количественная мера хаотического движения частиц данной системы или тела.

27. Первый закон термодинамики. Внутренняя энергия, энтальпия. Тепловой эффект химической реакции.

Первый закон термодинамики. В любом процессе соблюдается закон сохранения энергии, выражаемый равенством q = ∆U + A, которое означает, что теплота q, подведенная к системе, расходуется на увеличение ее внутренней энергии ∆U и на совершение системой работы А над внешней средой. Это уравнение математическое выражение первого закона термодинамики. Из первого закона термодинамики следует, что приращение внутренней энергии системы ∆U в любом процессе равно количеству вещества сообщенной системе теплоты q за вычетом количества совершенной системой работы A.

Внутренняя энергия – полная энергия системы за вычетом ее движения как целого и энергии взаимодействия с окружающим миром. Во внутреннюю энергию входят кинетическая энергия движения ядер, электронов, молекул и потенциальная энергия взаимодействия этих частиц. В.Э. – это все виды энергии системы.

ЭнтальпияH = U + pV – термодинамическая функция, которая учитывает возможность совершения системой механической работы (pV).

Если реакция происходит при постоянном давлении, то тепловой эффект связан с изменением энтальпии системы:

Q = - ∆H = H1 – H2, где Н1 – общая энтальпия исходных веществ, а Н2 – энтальпия продуктов реакции.

Так как многие химические реакции происходят при постоянном давлении, то под тепловым эффектом обычно понимают изменение энтальпии в химической реакции, ∆H.

Тепловой эффект химической реакции. Изменение энергии системы при протекании в ней химической реакции при условии, что система не совершает никакой другой работы, кроме работы рас­ширения, называется тепловым эффектом химической реакции. При постоянном давлении – это DH – энтальпия реакции. В стандартных условиях DH0.

28. Экзо-, эндотермические реакции.

Экзотермическими реакциями называют такие реакции, при которых происходит выделение теплоты. DH < 0.

Эндотермическими реакциями называют такие реакции, при которых происходит поглощение теплоты. DH >0.

29. Закон Гесса. Приведите примеры расчетов теплового эффекта химической реакции. Следствия из закона Гесса.