Смекни!
smekni.com

Полярные диаграммы и энергетические уровни волновых функций жесткого ротатора (стр. 1 из 2)

.

Энергетические уровни жесткого ротатора и его спектр

Поскольку квадрат момента импульса в жестком ротато­ре однозначно связан с энергией (4.47), формула (4.101) позволяет легко рассчитать его уровни и спектральные термы (Т), т.е. уровни, вы­раженные в единицах измерения волнового числа (см–1 ) , являющегося характеристикой излучения

(4.105)

. (4.105)

(4.107)

Величина В, определяемая (4.107), называется вращательной постоянной ротатора.

4.3.7.2. Обозначим величину

и составим таблицу 4.5 воз­можных значений энергии жесткого ротатора, а на рис. 4.5. предста­вим его энергетическую диаграмму.

4.3.7.3. Подобно плоскому ротатору, энергетическая диаграмма жесткого ротатора демонстрирует расходящуюся систему уровней, одна­ко значительно возрастает кратность вырождения. Расстояния между соседними уровнями увеличиваются с ростом квантового числа l, причем они линейно связаны с квантовым числом нижнего уровня l:

. (4.108)

Таблица 4.5.

Уровни жесткого ротатора

l Символ уровня

Энергия

Е,

Вырождение

g=2l+1

0 S 0 1
1 P 2 3
2 D 6 5
3 F 12 7
4 G 20 9

Рис. 4.5. Энергетическая диаграмма жесткого ротатора.

Для жесткого ротатора, например, двухатомной молекулы, разрешены спектральные переходы между соседними уровнями

. Поэтому, согласно уравнению 4.108, ее спектр пред­ставляет собой набор линий, отстоящих друг от друга на примерно одинаковую величину, равную
в энергетической шкале, или 2В в шкале волновых чисел
.

Поскольку вращательная постоянная связана с моментом инерции, изучение вращательных спектров молекул даёт возможность эксперимен­тального определения момента инерции молекул и, следовательно, меж­атомных расстояний.

4.3.3. Волновые функции жёсткого ротатора

4.3.8.1. Использование операторов сдвигов состояний позволяет также максимально просто найти собственные функций операторов

и
без каких-либо специальных сведений о дифференциаль­ных уравнениях. Авторы сознательно построили настоящий раздел в расчёте на внимательного читателя-химика, владеющего лишь мини­мальными, но достаточно прочными навыками в области тригонометрии и математического анализа.

4.3.8.2. Прежде всего, выпишем операторы повышения и понижения в сферических координатах, используя формулы (4.53) и (4.54):

(4.109)

В силу того, что собственные функции, получающиеся в результате действия операторов сдвига, подлежат нормировке, как это уже об­суждалось в разделе 4.3.5.10., мы имеем все основания определить эти операторы с точностью до постоянного множителя, т.е. вместо (4.109) ограничимся выражением

(4.110)

4.3.8.3. Исходные уравнения для вывода всей цепочки волновых функций – уравнения аннигиляции

(4.111)

На основании формул (4.50) и (3.28) функцию мож­но

представить в виде

(4.112)

С учётом этого уравнение (4.111) в сферических координатах: запишется в форме

. (4.113)

Совершим очень несложные преобразования, приводя к дифференциальному уравнению для функции

:

откуда следует

(4.114)

4.3.8.4. Разделяя переменные, получаем

(4.115)

Учтём что

,

(4.116)

Интегрирование уравнения (4.116) даёт

(4.117)

где

– постоянная интегрирования, определяемая из условия нормировки. Окончательно получаем формулу для функции

(4.118)

4.3.8.5.Формула (4.118) дает лишь предельные выражения волно­вых функций

, отвечающие максимальному и минимальному значе­ниям квантового числа m, а именно
и
, или что то же самое
. Все волновые функции, соответствующие промежуточным значениям
очень просто получаются последовательным действием операторов
с точностью до нормировочных множителей, которые могут быть рассчитаны в каждом конкретном случае

4.3.8.6.Отметим, что мы не ставим перед собой и перед читате­лем задачу вывода общей формулы сферических волновых функций. Это связано, с одной стороны, с тем, что она обязательно покажется сли­шком перегруженной индексами и коэффициентами, к которым удобнее привыкать постепенно. С другой стороны, для практических целей ред­ко требуются функции с большими значениями квантового числа l. В химическом обиходе встречается состояния с l = 0, 1, 2, 3, по­этому ограничимся этими значениями, (их символы см. в табл. 4.5 ).

4.3.8.7. Итак, нас будут интересовать s–, p–, d–, f– орбитали жесткого ротатора. Запишем соответствующие исходные функции

и
, с точностью до постоянного множителя:

для s-состояния

и

для p- состояния

и

для d- состояния

и

для f- состояния

и

4.3.8.8. Орбиталь s –типа – лишь одна и волновая пункция

тре­бует только нормировки. Поскольку сомножитель
уже нормирован, достаточно пронормировать функцию
. Выделяя из эле­мента конфигурационного пространства
(см. рис 4.3) все со­множители, определенные на переменной
, получаем

и, соответственно, нормировочное соотношение имеет вид

(4.119)

Во всех дальнейших преобразованиях следующих двух разделов будем опускать постоянные численные коэффициенты перед волновыми функциями, получающимися в результате операций сдвигов состояний над исходными функциями

– степенями синусоиды
.

4.3.8.9. Квантовое число l=1 порождает три р-функции с m=1, 0, -1 т.е. орбитали с

Двум из них с
отвечает
Нормировочный множитель находим из соотношения

.