Смекни!
smekni.com

Переработка золотосодержащего сырья (стр. 5 из 9)

Тем не менее, амальгамация сохранила свое значение для извлечения свободного золота из гравитационных кон­центратов, получаемых при переработке коренных и рос­сыпных руд. В этом случае приходится обрабатывать не­большое количество богатого материала, и амальгамационный процесс сохраняет свое основное преимущество — дешевую и быструю реализацию золота в виде металла. Этим методом, в частности, перерабатывают основную мас­су гравитационных концентратов в ЮАР.[3]

СГУЩЕНИЕ

Сгущение — следующий после измельчения этап обработки пульпы. Оно состоит в частичном обезвоживании пульпы отстаи­ванием — оседанием твердых частиц на дно чана-сгустителя и сли­вом осветленного раствора. В большинстве случаев в осевшем материале остается около 50% (по массе) воды. что соответствует отношению ж : т = 1 : 1. Предел сгущения зависит от крупности, плотности и физико-химических свойств измельченных частиц обрабатываемой руды.

Содержащиеся в пульпе частицы обычно сильно различаются по размерам. Наряду со сравнительно крупными зернистыми частицами (свыше 0,1 мм) в пульпе обычно содержится значитель­ное количество частиц размером в несколько микронов и даже мельче (меньше 0,001 мм). Более крупные частицы оседают быстрее, а мелкие удерживаются во взвешенном состоянии в течение дол­гого времени.[1]

ЦИАНИРОВАНИЕ ЗОЛОТОСОДЕРЖАЩИХ РУД

Рассмотренные выше методы гравитационного обогащения и амальгамации позволяют извлекать из руд только относительно крупное золото. Однако подавляющее большинство золотосодер­жащих руд наряду с крупным золотом содержит значительное, а иногда и преобладающее количество мелкого золота, практически неизвлекаемого этими методами, вследствие чего хвосты гравитационного обогащения и амальгамации, как правило, содержат значительное количество золота, представленного мелкими золотинами. Основным методом извлечения мелкого золота является процесс цианирования.

Сущность этого процесса заключается в выщелачивании благородных металлов с помощью разбавленных растворов цианистых солей щелочных или щелочноземельных металлов [KCN, NaCN, Са(CN)2]. Полученные золотосодержащие растворы отделяют от твердой фазы (отвальных хвостов) сгущением или фильтрацией и направляют на осаждение благородных металлов металлическим цинком. Осадок благородных металлов после соответствующей обработки отправляют на аффинаж для получения чистых золота и серебра.[1]

СОРБЦИЯ ИЗ ПУЛЬП (СОРБЦИОННОЕ ВЫЩЕЛАЧИВАНИЕ)

Особенностью процесса сорбции из пульп является несколько меньшая скорость процесса вследствие повышенной вязкости пульп (при ж : т = 1...2 : 1) и осаждения шламовых покровов на поверхности частиц ионита, затрудняющих диффузию ионов. Кроме того, следует учитывать неизбежность повышенных потерь ионита вследствие разрушения его зерен при абразивном воздействии рудных частиц. Поэтому сорбцию из пульп в производственных условиях следует проводить при крупности рудных частиц не более 0,15 мм. Кинетика сорбции золота и серебра из цианистой пульпы свидетельствует о том, что большая часть золота переходит в фазу ионита за первые 2 ч перемешивания пульпы. Увеличение продолжительности контакта дает малый эффект вследствие приближения системы смола—пульпа к равновесию: через 8 ч сорбция золота составила только 68,4%. Значительно уменьшается извлечение в фазу смолы серебра: 2% через 2 ч и 28% через 8 ч контакта смолы с пульпой. Полная сорбция благородных металлов происходит при значительном увеличении количества загружаемой смолы.

Показана возможность полной сорбции из пульп растворенного золота анионитами и разработан метод применения данного процесса для определения содержания растворенного неотмытого золота в кеках фильтров

или сбросной пульпе ЗИФ (И.Д.Фридман). Использование сорбционного метода позволяет извлечь из проб большее количество золота, и следовательно, получить большую точность анализа по сравнению с обычно применяемым методом декантационной промывки. Сорбция золота из пульп применяется не только для анализа хвостов ЗИФ, но непосредственно в технологическом процессе цианирования руд и концентратов. В последнем случае сорбция из пульпы обычно совмещается с процессом выщелачивания золота и серебра из руд и процесс носит название «сорбционное выщелачивание». Первые исследования по сорбционному выщелачиванию золотосодержащих руд в нашей стране проводились И.Н.Плаксиным с сотрудниками. Дальнейшее развитие исследования данного процесса получили в работах Б.Н.Ласкорина и его сотрудников, которые разработали и внедрили в производство противоточную схему сорбционного выщелачивания золотосодержащих руд. В результате исследований и производственной работы установлено, что сорбционное выщелачивание ведет к значительному ускорению процесса растворения золота и сокращению продолжительности цианирования в 2—3 раза. Кроме того, в ряде случаев повышается степень извлечения золота, и заметно
уменьшаются потери нерастворенного золота с хвостами цианирования. При сорбционном выщелачивании кварцевой руды, измельченной до 95,4% класса —0,044 мм

(при ж : т = 2 : 1), в лабораторных условиях уже за первые 4 ч извлечение золота составило 85,5%, а за 8 ч оно увеличилось до 96,8% (рис.8). В условиях обычного цианирования за 4 ч перешло в раствор только 61,2% золота, а 96,0% — за 24 ч цианирования. Таким образом, при совмещении процессов выщелачивания и сорбции растворенного золота скорость процесса цианирования возросла в 3 раза (8 ч вместо 24 ч), при этом потери золота с хвостами снизились с 1-1,2 до 0,8 г/т. В этом случае также скорость процесса при сорбционном выщелачивании увеличилась в 3 раза, так как максимальное извлечение золота 94,9% достигнуто при этом за 3,5 ч; при обычном цианировании такое извлечение получено за 10,3 ч. Ускорение процесса при сорбционном выщелачивании объясняется сдвигом равновесия реакции растворения золота в сторону образования аниона [Ag(CN)2]- при понижении концентрации его в растворе вследствие сорбции анионитом: 2Аu + 4CN- + ЅO2 + Н20= 2 [Au (CN)2]- + 2OН-. Анализ кинетики процесса показывает, что увеличение градиента концентрации аниона [Au (CN)2]- ускоряет диффузионный отвод его из зоны реакции и процесс растворения в целом. На повышение скорости растворения золота и серебра влияет также и удаление ионов сопутствующих неблагородных металлов в результате сорбции их из раствора смолой. [2]

ЭЛЮИРОВАНИЕ ЗОЛОТА И СЕРЕБРА И РЕГЕНЕРАЦИЯ НАСЫЩЕННЫХ АНИОНИТОВ

В процессе сорбции благородных металлов из цианистых растворов и пульп получают насыщенные аниониты, содержащие сорбированные комплексные цианистые анионы золота, серебра и неблагородных металлов и неметаллические анионы – SCN-, CN-, ОН- и др. Насыщенные аниониты подвергаются процессу регенерации с целью десорбции сорбированных анионов и восстановления их сорбционной активности для оборотного использования в процессе сорбции. Десорбция со смолы сорбированных соединений производится элюированием (вымыванием) растворами соответствующих реагентов, причем целесообразно селективное извлечение золота и серебра в концентрированный раствор с последующим получением их в виде товарного продукта. Следует возможно полнее использовать также другие десорбированные компоненты: медь, цианид и др. Десорбция [Au (CN)2]-. Испытание для десорбции золота ряда обычных элюирующих растворов — хлористого натрия, хлористого аммония, соляной и серной кислот, гидроксила натрия и аммония, карбоната натрия, цианистого натрия и др. - оказалось неэффективным: золото извлекается лишь частично и неселективно. Английскими исследователями установлена возможность успешного элюирования аниона [Au (CN)2]- рядом органических растворителей в смеси с минеральными кислотами, такими как метиловый или этиловый спирт + 5—10% НС1 + 5% Н2О, ацетон + 5% НСl, этилацетат + 10% HNO3+ 5% Н2О и др. Лучшие результаты получены при использовании смесей: ацетон + 5% Н2О или ацетон + 5% HNO3 + 5% Н2О. При применении смеси ацетона с НСl достигается полное вытеснение золота и меди, в то время как железо, цинк и серебро элюируются в меньшем количестве. Применение смеси ацетона с HNO3 дaeт полное, почти селективное, извлечение золота; железо и медь элюируются этим раствором значительно хуже. Элюирование цианистого золота данным методом объясняется образованием золотосодержащего комплекса с органическим растворителем в присутствии минеральной кислоты, ковалентного комплекса, не удерживаемого анионитом. Метод с применением органических растворителей испытан на укрупненной опытной установке в Родезии, но не нашел промышленного применения. Основными недостатками его являются дороговизна, огнеопасность органических реагентов и большой объем элюирующего раствора. В ряде отечественных и зарубежных исследований установлено, что эффективное Элюирование аниона [Au (CN)2]- с анионитов достигается растворами роданистых солей — KSCN, NaSCN, предпочтительно NH4SCN, который содержит больше групп SCN на единицу массы. Для более полной и быстрой десорбции золота рекомендуется использовать щелочные концентрированные растворы NH4SCN - 3-5 н. (228-380 г/л) с содержанием NaOH от 10 до 25 г/л. Процесс десорбции золота протекает по реакции анионного обмена: