Смекни!
smekni.com

Живые полимеры и их роль в работе с человечесим материалом (стр. 2 из 3)

Одна из моделей вторичной структуры – α-спираль, обусловленная внутримолекулярными водородными связями, другая модель – β-форма ("складчатый лист"), в которой преобладают межмолекулярные водородные связи.

Вторичная структура белка:

Третичная структура – форма закрученной спирали в пространстве, образованная главным образом за счет дисульфидных мостиков -S-S-, водородных связей, гидрофобных и ионных взаимодействий. Третичная структура белка отвечает определенной укладке спиралей и линейных участков полипептидной цепи в пространстве и зависит от взаимодействия полярных и неполярных заместителей в разных местах цепи, от образования ковалентных связей S-S между противоположными цистеиновыми остатками, эфирных мостиков, водородных связей. Возникают компактные глобулярные частицы и частицы, имеющие форму стержней.

Третичная структура белка:

Четвертичная структура белка представляет собой ассоциацию нескольких полипептидных цепей (белковые комплексы), обладающих вторичной и третичной структурой и образованные за счет взаимодействия разных полипептидных цепей.

Четвертичная структура белка:

Нуклеиновые кислоты

Нуклеиновые кислоты, полинуклеотиды, важнейшие биологически активные биополимеры, имеющие универсальное распространение в живой природе. Содержатся в каждой клетке всех организмов. Нуклеиновые кислоты были открыты в 1868 швейцарским учёным Ф. Мишером в клеточных ядрах, изолированных из гноя, а также из спермиев лосося. Позднее нуклеиновые кислоты были обнаружены не только в ядре, но и в цитоплазме. Различают два главных типа нуклеиновых кислот- дезоксирибонуклеиновые кислоты, или ДНК, содержащиеся преимущественно в ядрах клеток, и рибонуклеиновые кислоты, или РНК, находящиеся главным образом в цитоплазме.

Молекулы Нуклеиновых кислот - длинные полимерные цепочки, построенные из мономерных молекул - нуклеотидов так, что гидроксильные группы у 31 и 51 углеродных атомов углевода соседних нуклеотидов связаны остатком фосфорной кислоты. В состав РНК в качестве углевода входит рибоза, а азотистые компоненты представлены аденином, гуанином (пуриновые основания), урацилом и цитозином (пиримидиновые основания). В ДНК углеводным компонентом является дезоксирибоза, а урацил заменен тимином (5-метилурацилом). Фосфат и сахар составляют неспецифическую часть в молекуле нуклеотида, а пуриновое или пиримидиновое основание - специфическую. В составе большинства нуклеиновых кислот обнаружены в небольших количествах также некоторые другие (главным образом метилированные) производные пуринов и пиримидинов - т. н. минорные основания. Цепи Нуклеиновых кислот содержат от нескольких десятков до многих тысяч нуклеотидных остатков, расположенных линейно в определённой последовательности, уникальной для данной Нуклеиновой кислоты. Т. о., как РНК, так и ДНК представлены огромным множеством индивидуальных соединений. Линейная последовательность нуклеотидов определяет первичную структуру Нуклеиновых кислот. Вторичная структура Нуклеиновых кислот возникает в результате сближения определённых пар оснований, а именно: гуанина с цитозином и аденина с урацилом (или тимином) по принципу комплементарности за счёт водородных связей, а также гидрофобных взаимодействий между ними.

Биологическая роль Нуклеиновых кислот заключается в хранении, реализации и передаче наследственной информации, "записанной" в молекулах Нуклеиновых кислот в виде последовательности нуклеотидов - т. н. генетического кода. При делении клеток - митозе - происходит самокопирование ДНК - её репликация, в результате чего каждая дочерняя клетка получает равное количество ДНК, заключающей программу развития всех признаков материнской клетки. Реализация этой генетической информации в определённые признаки осуществляется путём биосинтеза молекул РНК на молекуле ДНК (транскрипция) и последующего биосинтеза белков с участием разных типов РНК (трансляция).

Исследование строения и функций Нуклеиновых кислот в 50-70-х гг. XX в. обусловило огромные успехи молекулярной генетики и молекулярной биологии. Важнейшим этапом в изучении химии и биологии Нуклеиновых кислот было создание в 1953 Дж. Уотсоном и Ф. Криком модели ДНК (двойная спираль), что позволило объяснить многие её свойства и биологические функции. Нуклеиновые кислоты обнаружены также в клеточных органеллах (хлоропластах, митохондриях и др.), где функции их изучаются. Сравнительный анализ Нуклеиновых кислот в разных группах организмов играет важную роль при решении вопросов систематики и эволюции. Каждый вид организмов содержит специфичные Нуклеиновые кислоты (как РНК, так и ДНК). Степень сходства в строении Нуклеиновых кислот указывает на уровень филогенетической близости организмов.

Полисахариды

ДНК и РНК

ДНК и РНК содержат основную цепь, состоящую из звеньев глюкозы. Поэтому они относятся к группе полимеров полисахаридов, хотя в случае ДНК и РНК именно боковые группы, хорошо упорядоченные, придают этим полимерам их уникальные свойства.

Крахмал, целлюлоза

Другое семейство полисахаридов включает крахмал и целлюлозу. Крахмал - это полисахарид с высокой молекулярной массой. Пищевые продукты такие, как хлеб, кукуруза и картошка полны крахмала. В состав крахмала может входить до 10000 звеньев глюкозы, связанных между собой. Способ, которым эти звенья соединены между собой, либо все в одну линию, либо с некоторыми разветвлениями, определяют, каким типом крахмала или другого полисахарида является данная молекула. Другим очень важным членом семейства полисахаридов является целлюлоза. Она является основным полимером, из которого построены растения. Древесина в основном состоит из целлюлозы. Этот полимер отличается от крахмала. Крахмал растворим в горячей воде и из него можно легко, сделать полезные предметы. Целлюлоза же, напротив, в высокой степени кристаллична, поэтому не растворяется практически ни в чем. Хлопок является одной из разновидностей целлюлозы, которую мы часто используем в нашей одежде. То, что хлопок нерастворим в горячей воде, для нас очень важно. В противном случае наша одежда растворялась бы при попытке выстирать ее. Целлюлоза также обладает тем приятным свойством, что если вы намочите ее, а затем проведете по ней горячим утюгом, она снова выравнивается и разглаживается. Это придает опрятный вид нашей одежде (по крайней мере, на некоторое время), но тем не менее позволяет легко смывать с нее грязь, когда мы ее стираем.

Хитин: полимер для тех из вас, кто любит морепродукты!

Другим семейством полисахаридов является хитин. Из него сделаны панцири раков, креветок, крабов, лобстеров и других ракообразных. Он тверд, нерастворим… и тем не менее почему-то гибок. Мы пока еще не поняли, что хорошего можно сделать из хитина, хотя мы используем целлюлозу в ряде химических процессов, а также для изготовления бумаги, деревянных домов, деревянных башмаков и так далее. Для того, чтобы использовать хитин для создания новых материалов проводятся обширные исследования, и может быть, когда-нибудь мы будем делать из него одежду или пластмассы. Эти исследования очень важны, поскольку они направлены на использование природных полимеров, поступающих из возобновляемых источников или отходов производства.

С химической точки зрения хитин является поли(N-ацетоглюкозамином). Вот его структура:

Природные смолы

Смолы природные - вырабатываемые некоторыми растениями сложные по химическому составу вещества; затвердевают на воздухе, растворимы в органических растворителях, нерастворимы в воде. Образуются главным образом тропическими растениями (копайский бальзам, шеллак и др.); в умеренной зоне - преимущественно растениями семейства сосновых (канифоль). Ископаемые природной смолы - копал, янтарь. Применение природной смолы в производстве лаков, политур, клеев и др. сокращается в связи с их заменой синтетическими продуктами.