1 – подогреватель; 2 – реактор; 3, 12, 15 – циклон; 4 – котел-утилизатор; 5, 8 – холодильник; 6 – вентилятор; 7 – электрофильтр; 9 – сепаратор; 10 – газлифт; 11 – бункер; 13 – пароподогреватель; 14 – воздухоподогреватель;
1.2.2 Непрерывный пиролиз в движущемся слое твердого теплоносителя
Недостатки периодически действующего регенеративного реактора обусловили разработку аппарата, в котором непрерывно, противотоком к потоку газа, движется теплоноситель, используемый для подогрева и пиролиза углеводородов. Как показали расчеты и эксперименты в промышленном масштабе, при такой схеме можно увеличить выход целевых продуктов (этилен) путем применения более высоких температур, меньшего времени контакта и более низких средних давлений по сравнению с используемыми в трубчатых печах. Схема промышленной установки с твердым движущемся теплоносителем изображена на рисунке 4. Основными элементами установки являются два аппарата: подогреватель 1, в котором теплоноситель, двигаясь сверху вниз, нагревается до 950°С при непосредственном контакте с топочными газами, и реактор 2, в котором при температуре около 900°С происходит пиролиз поднимающегося углеводородного сырья при соприкосновении с опускающимся теплоносителем. Подогреватель соединен с реактором изолированной перепускной трубой. Охлажденный в реакторе теплоноситель подается через дозатор 3
в газлифт 4; воздух в газлифт нагнетается вентилятором 5 и через воздухоподогреватель 6. Дозатор регулирует скорость перемещения теплоносителя в системе. Из газлифта теплоноситель поступает в основной сепаратор 7 для отделения пыли, откуда самотеком направляется в подогреватель. Теплоноситель нагревается в результате прямого контакта в подогревателе продуктами сгорания природного газа, полученными в специальной круговой топке 8. Топка работает под давлением до 0,35, поддерживаемым вентиляторами 9, 10. Мелочь теплоносителя отделяется в сепараторе 11.
Подлежащие нагреву и крекингу пары сырья вводятся в нижнюю часть реактора через круговой распределитель, обеспечивающий равномерное распределение сырья по сечению. Продукты пиролиза на выходе из ректора попадают в аппарат первичной закалки 12, где температура их снижается до 250-400°С. В дальнейшем пирогаз охлаждается до 50-60°С в оросительном скруббере. На перепускной трубе, связывающей подогреватель с реактором. Для предупреждения смешения продуктов сгорания с пирогазом создается затвор подачей водяного пара. Аналогичный затвор создается между дозатором и реактором для того, чтобы не допустить смешения сырья с газлифтным воздухом.
Рисунок 3 – Схема установки пиролиза с движущимся твердым теплоносителем 1 – подогреватель; 2 – реактор; 3 – дозатор; 4 – газлифт; 5, 9, 10 – вентилятор; 6 – воздухоподогреватель; 7 – сепаратор; 8 – круговая топка; 12 – аппарат первичной закалки;
При сравнении реактора с движущимся теплоносителем с трубчатой печью видно, что при пиролизе на этилен в реакторе можно поддерживать более высокую температуру и меньшее время контакта, чем в трубчатой печи; выход целевых продуктов – этилена. Либо этилена и ацетилена, за проход больше на 20-45% в зависимости от сырья; реактор работает при небольших перепадах давления и без рециркуляции в системе пиролиз-газоразделение.
С другой стороны, на реактор требуется большие капитальные затраты, расход технологического пара выше, необходима периодическая очистка системы от кокса, износ твердого теплоносителя повышенный и в связи с этим увеличенные эксплуатационные расходы [ ].
1.2.3 Каталитическое гидрирование ацетилена в этилен
В Германии был разработан и осуществлен в промышленности процесс получения этилена гидрированием ацетилена.
C2 H2 + H2 = C2 H2 + Qп
Оптимальная температура процесса 180-320 °С в зависимости от активности катализатора.
Ацетилен, полученный из карбида кальция (чистота 98-99%), сжимается в компрессоре 1 до 1,5-2, охлаждается в холодильнике 2 и очищается твердым адсорбентом (алюмогелем) в адсорбере 3 от паров масла, так как последнее является ядом для катализатора. Водород, полученный из установки газоразделения (чистота 96-98%), сжимается в компрессоре 4, охлаждается в холодильнике 5, осушается и очищается от паров масла в адсорбере 6. Предварительный подогрев водорода и ацетилена осуществляется за счет тепла реакции либо в реакторе 7, либо в выносных теплообменниках. Оптимальная температура в реакторе поддерживается автоматически непрерывной подачей охлаждающей воды в трубчатый теплообменник реактора
Установка «БАСФ»
Фирмой «Бадише анилин унд сода фабрик» (ФРГ) разработан способ пиролиза сырой нефти в аппарате с кипящим слоем порошкообразного нефтяного кокса; в этот же аппарат подают кислород и водяной пар (рис 5). Количество вводимого в реактор кислорода регулируется, исходя из условия обеспечения автотермического процесса пиролиза. Перерабатываемое сырье вводится в кипящий слой на 500 мм выше решетки с целью отделения кислородной зоны от зоны пиролиза углеводородов. Высота кислородной зоны составляет 100 мм.
Установлено, что максимальный выход непредельных углеводородов С2 —С4 при времени контакта 1 сек. наблюдается при температуре 720 — 730°С, в то время как для выхода этилена оптимальная температура равна ~800°С. Рабочая температура процесса принята равной 720°С, т.е несколько ниже, чем при пиролизе по другим методам. Выбор такой температуры обусловлен тем, что в определенном температурном интервале показатели пиролиза при пониженной температуре и повышенном времени контакта аналогичны показателям при повышенной температуре и меньшем времени контакта.
Расход кислорода составляет около 300 нм3 на 1 т сырой нефти. Кислород реагирует преимущественно с наиболее тяжелыми продуктами пиролиза, которые подаются в реактор из промывной колонны, а также с коксом, образующимся из этих продуктов на поверхности частиц теплоносителя. Количество рециркулирующих тяжелых продуктов при переработке парафинистой и асфальтеновой нефтей составляет соответственно 250 кг и 750 кг.
На показатели процесса большое влияние оказывает время пребывания газа пиролиза в зоне высоких температур после выхода из кипящего слоя, т. е. в надслойном объеме аппарата. Количество выделяющейся сажи увеличивается с 10 до 40 - 80 г при увеличении времени контакта с 0,3 до 1 - 5 сек. Сажеобразование может быть уменьшено путем увеличения добавки водяного пара. Например, при температуре пиролиза 720 °С, времени пребывания газа в надслойном объеме 0,3 сек., скорости газа 0,7 м/сек увеличение весового отношения пар/сырье с 0,5 до 2,5 приводит к снижению выхода сажи с 13 до 2,5 г на. I кг свежего сырья [ ].
1.2.4 Окислительный пиролиз
Окислительным пиролизом называется такой, при котором углеводород пиролизуется в результате нагрева при сгорании части этого же углеводорода в кислороде воздуха. Окислительный пиролиз применяется при производстве ацетилена из метана, а также для разложения этана в этилен. При этом параллельно идут следующие процессы:
С2Н6 + СО2 = СО2 + Н2О
Конверсия этана
С2Н6 + О2 = 2СО + 3Н2
Дегидрирование этана
С2Н6 = С2Н4 + Н2
Дегидрированием этилена
С2Н4 = С2Н2 + Н2
В результате перечисленных реакций получают СН4, Н2, парафиновые и олефиновые углеводороды С2, С3, С4 и т. д.
При термоокислительном пиролизе из 100 м3 этана, 30 м3 кислорода и 2 м3 азота при 850°С и абсолютном давлении 410 мм рт. ст. образуется 170 м3 пирогаза с содержанием этилена около 30% объемы. Примерный состав (в % вес.) пирогаза после предварительной промывки водой:
Н2 | СН4 | С2Н4 | С2Н6 | C3H6 | С3Н8 | СmНn | С2Н2 | СО2 | СО N2 | |
26,5 | 7,0 | 30 | 16 | 2,5 | 1 | 1,0 | 1,5 | 1,5 | 10 3 |
Рисунок 4 - Схема установки окислительного пиролиза этана.
1 - газгольдер для этана; 2 - ротационные счетчики; 3 - газгольдер для кислорода; 4 -вакуумный насос для этана. 5 - компрессор; 7 - отстойник; 8 - подогреватель; 9 - огневой подогреватель кислорода; 10 - реактор; 11 - закалочный теплообменник; 12 - скруббер; 13 - вакуумный насос; 14 – отделитель жидкости; 15 - емкость для жидкости; 16 - циркуляционный насос.
Ниже описывается промышленная установка окислительного пиролиза этана в этилен в ГДР, которая хорошо работает в течение ряда лет (рис. 4).
Она состоит из огневого подогревателя этана 8, огневого подогревателя кислорода 9, реактора 10, закалочного теплообменника 11, скруббера 12, вакуум-насоса 13, трубопроводов, системы КИП и автоматики.
Этан, поступающий из установок разделения газов гидрирования (состав: 1 - 3% объемных CH4, 93—95% объемных С2H6, 1 - 2% объемных углеводородов С3 и высших), пройдя ротационный счетчик 2, поступает в этановый газгольдер 1, куда направляется также один из обратных потоков этана из установки разделения газов пиролиза.
Этан при давлении 160 мм\ вод. ст. поступает в вентилятор 4, сжимается в нем до давления 150 мм рт. ст., затем направляется в реактор 10. Реактор состоит из смесительной камеры, распределительного устройства, выполненного в виде керамической насадки, и цилиндрической реакционной части. Реакционная смесь, пройдя снизу вверх через распределительное устройство, поступает в цилиндрическую часть, заполненную фарфоровыми шариками диаметром 40 мм. Частичное сгорание этана происходит при абсолютном давлении 410 мм рт. ст.; при этом давлении пределы взрываемости этана существенно уменьшаются. Кроме того, снижение давления благоприятно сказывается на протекании реакций дегидрирования, идущих с увеличением объема. К кислороду добавляют 10% объемных азота, чтобы сгорание происходило без взрыва.